
NASA CR-

./_/L" 3_.2'

PROGRAMMER'S
GUIDE

I II I
I II I
l 111
II'ITERmETRIE5

IR-63-4

ii June 1976

HAL/S

PROGRAMMER'S

GUIDE

INTERMETRICS APPROVAL

Head_ge C°m_iler_ Department

Dr. F°H. Martin

Shuttle Program Manager

PREPARED BY

d

InTERmETRIES
(

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661_

PREFACE

The HAL/S Programming Language has been developed by the

staff of Intermetrics, Inc. based on many years of experience

in producing software in the aerospace field. Although

HAL/S was designed to fulfill the flight software require-

ments of the NASA Space Shuttle program, its features are

sufficiently broadly based to meet production software

requirements in many other aerospace and real time applica-

tions. HAL accomplishes three significant objectives:

• problem orientation, through the use of constructs

designed with specific applications in mind;

• enhanced readability, through the use of a natural

mathematical format;

• increased reliability, through the incorporation of

code and data protection features.

The design of HAL/S exhibits a number of influences, the

greatest being the syntax of PL/I and ALGOL, and the two-

dimensional format of MAC/360, a language developed at the

Charles Stark Draper Laboratory. With respect to the latter,

Intermetrics wishes to acknowledge the fundamental contribu-

tion to the concept and implementation of MAC, made by Dr. J.

Halcombe Laning of the Draper Laboratory.

The HAL/S Programmer's Guide presents an informal description

of HAL/S aimed primarily at those unfamiliar with the language.

The Guide was prepared by the staff of Intermetrics, Inc. under

direction of Dr. Philip Newbold, the document's principal
author.

Editorial assistance was provided by Lee Hotz, and the type-

script was prepared by Valerie Cripps.

This document was originally prepared by Intermetrics Incorporated
in accordance with NASA Contract NAS9-13864. It has been sub-

sequently modified by Intermetrics under a subcontract to I_4 Cor-
poraticm in accordance with NASA contract NAS9-14444.

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INTRODUCTIONTO HAL/S

HAL/S is a higher order programming language developed

by Intermetrics, Inc. for the flight software of the

NASA Space Shuttle program. The language is expressly

designed to allow programmers, analysts, and engineers

to create software which is reliable, efficient, highly

readable, and easily maintained.

HAL/S is intended to satisfy virtually all the flight

software requirements of the Space Shuttle. To achieve

this, the language incorporates a very wide range of

features, including applications oriented data types

and computations, real time control, and constructs for

implementing systems programming algorithms.

• DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number of

different data types. Its integer, scalar, vector,

and matrix types, together with the appropriate

operators and built-in functions provide an extremely

powerful tool for the implementation of guidance and

control algorithms. Bit and character string processing
constructs are available. The formation and use of

multi-dimensional arrays, and of tree-like organizations

of heterogeneous data are also featured.

• REAL TIME CONTROL

HAL/S is a real time control language. Real time processes

can be scheduled and executed in a variety of different

modes. Mechanisms for interfacing with external interrupts

and other environmental conditions are provided.

• ERROR RECOVERY

HAL/S contains an elaborate run time error recovery

facility which allows the programmer freedom (within

the constraints of safety) to define his own error

processing procedures, or to leave control with the

operating system.

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• SYSTEMS PROGRAMMING FEATURES

HAL/S contains a number of features especially designed

to facilitate its application to systems programming,

thus substantially eliminating the necessity of using

an assembler language. Most important among these is

a facility for creating and manipulating pointers to

various kinds of data and code blocks.

Specific features of the HAL/S language have been

incorporated to enhance software reliability. By various

means, separate blocks of code can be isolated from one

another while maintaining ease of access to commonly used

data.

• BLOCK ORIENTATION

HAL/S is a block oriented language: nested blocks of

code may be established which define local variables

that are invisible outside the block.

• CENTRAL DATA POOLS

Separately compile blocks of code can be executed

together, and communicate through one or more centrally

managed and highly visible data pools.

• CONTROLLED ACCESS IN REAL TIME

In a real time environment, HAL/S couples the above pre-

cautions with locking mechanisms preventing uncontrolled

access to sensitive data or areas of code.

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HOW TO USE THE PROGRAMMER'SGUIDE

The HAL/S Programmer's Guide is primarily designed to

describe the features of HAL/S and their use to programmers

previously unfamiliar with the language. Once the contents

of the Guide have been mastered, the HAL/S Language Specifica-

tion document will serve as an additional reference source

for the finer details of each language construct. For

executin@ HAL/S programs, a user will require information

contained in the HAL/S User's Manual applicable to his

particular machine.

The Programmer's Guide is divided into two parts which

should be read in order of their appearance.

PART I describes many oE the major features of the

language in sufficient detail to enable a new

user to begin writing useful HAL/S programs. It

should initially be read through in its entirety,

from first section to last, and then later

referred back to as required.

PART II covers additional language forms omitted from

Part I by reason of their complexity or relative

unimportance. Part I makes frequent reference to

the existence of the forms described in Part II,

to facilitate cross referencing. Since Part II

is a collection of largely unrelated topics, it

is generally not necessary to read the sections

sequentially.

It is stressed again that the HAL/S Language Specification

Document is the final arbiter concerning the rules governing

the form and use of all HAL/S constructs. Appropriate refer-

ences to the Specification are made in the Guide where

omissions have been made in order to retain clarity.

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CONTENTSOF PART I

Part I of the Programmer's Guide is oriented towards those

who have no knowledge of the HAL/S language. It describes

the simpler versions of many of the salient features across

the entire spectrum of the language. Part I assumes a

gradually accumulating knowledge of HAL/S from section to

section. Therefore, it should initially be read through in

its entirety, from first section to last.

Paragraphs of text enclosed in horizontal bars refer to

the existence of more complex HAL/S constructs described

elsewhere in the Guide or in the Language Specification

Document.

io

•

•

•

o

STRUCTURE OF HAL/S

i.i STRUCTURING AND HIGHER ORDER LANGUAGE

1.2 THE BLOCK STRUCTURE OF HAL/S

1.3 STATEMENT GROUPING IN HAL/S

HAL/S SYMBOLOGY

2.1 THE CHARACTER SET

2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS

2.3 FORMAT OF SOURCE TEXT

2.4 STATEMENT DELIMITING

2.5 COMMENTS IN HAL/S

A HAL COMPILATION - THE PROGRAM BLOCK

3.1 OPENING AND CLOSING THE BLOCK

3.2 POSITION OF DATA DECLARATIONS

3.3 FLOW OF EXECUTION IN THE PROGRAM

DATA DECLARATION

4.1 HAL/S DATA TYPES

4.2 SIMPLE DECLARATION STATEMENTS

4.3 INITIALIZATION OF DATA

REPLACE STATEMENTS

5.1 THE REPLACE STATEMENT

5.2 USING REPLACE STATEMENTS

i-i

i-i

1--2

1-9

2-1

2-1

2-,-2

2--8

2-10

2-10

3-1

3-1

3-2

3-3

4-1

4-1

4-2

4-10

5-1

5-1

5-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

o

o

DATA REFERENCING AND SUBSCRIPTING

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

EXPRESS IONS

7.1 ARITHMETIC OPERATIONS

7.2 CHARACTER OPERATIONS

7 .3 BOOLEAN OPERATIONS

7.4 COMBINING OPERATIONS & PRECEDENCE

7.5 SOME EXPLICIT CONVERSIONS

7.6 BUILT-IN FUNCTIONS

8 . ASS IGNMENTS

So

i0.

Ii.

12.

8.1 GENERAL FORM OF ASSIGNMENT

8.2 ARITHMETIC ASSIGNMENTS

8.3 CHARACTER ASSIGNMENTS

8.4 BOOLEAN ASSIGNMENTS

8.5 MULTIPLE ASSIGNMENTS

CONDITIONAL STATEMENTS AND BRANCHES

9.1 THE CONDITIONAL STATEMENT

9.2 RELATIONAL EXPRESSIONS

9 .3 LABELS AND BRANCHES

6-1

6-i

6-8

7-1

7-1

7-18

7-20

7-23

7-26

7-32

8-1

8-1

8-2

8-7

8-10

8-11

9-1

9-1

9-7

9-15

STATEMENT GROUPS i0-i

i0.i DELIMITING STATEMENT GROUPS i0-i

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS 10-5

10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS 10-13

10.4 BRANCHING IN STATEMENT GROUPS 10-15

PROCEDURES AND FUNCTIONS ii-i

ii.i INTRODUCTION ii-i

11.2 BLOCK DEFINITIONS i1-2

11.3 DECLARATION OF PARAMETERS AND LOCAL DATA 11-6

11.4 FUNCTION INVOCATIONS 11-8

11.5 PROCEDURE INVOCATIONS 11-14

11.6 RETURNS FROM PROCEDURES AND FUNCTIONS 11-19

INPUT/OUTPUT STATEMENTS 12-1

12.1 HAL/S INPUT�OUTPUT CONCEPTS 12-1

12.2 THE WRITE STATEMENT 12-4

12.3 THE READ STATEMENT 12'8

12.4 INPUT/OUTPUT FORMATTING 12-11

12.5 DEVICE ATTRIBUTES 12-18

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

13. REAL TIME PROGRAMMING - I

13.1

13.2

13.3

13.4

13.5

13.6

13-1

13-i

13-7

HAL/S REAL TIME CONCEPTS

TASK BLOCK DEFINITIONS

FLOW OF EXECUTION IN PROGRAM & TASK

BLOCKS 13-12

THE SCHEDULE STATEMENT 13-13

OTHER REAL TIME FEATURES OF HAL/S 13-18

A SIMPLE REAL TIME PROGRAM 13-23

14. SUMMARY OF PART I 14-1

®

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

1, STRUCTUREOF HAL/S

This section gives an overview on an abstract level of the

overall properties of HAL/S compilations, and tries to relate

these properties to the need for good programming practice.

Later sections of the Guide interpret these properties in terms

of actual HAL/S Language constructs.

i,i STRUCTURINGANDHIGHERORDERLANGUAGES

A common method of problem solving is the so-called "top down"

approach. The algorithm for solving the problem is first out-

lined broadly, and then, step by step, delineated in successively

deeper levels of greater detail. The success of the algorithm

in arriving at the solution lies as much in its ability to break

down the problem into its simplest component parts, as in its

ability to resolve the problem as a whole.

If a problem is to be solved by programming it in a higher order

language, then the "top down" approach is of especial interest

because it lends insight into how the program can be organized.

Specifically, the organization takes the form of an outer program

block enclosing numerous nested "subroutines"*. On the outermost

level, the program is only concerned with the broad outlines of

the solution, and relegates the first level of detail to the outer

set of subroutines. These in turn relegate the next level of

detail to an inner set of subroutines, and so one until each

level of the problem has been relegated to the appropriate set

of subroutines.

Here the term "subroutine" is loosely used in its

generally recognized sense, conveying the idea of

a subordinate block of code executed by calling it,

and returning to the caller on completion. HAL/S

uses different terminology, to be introducted later.

i-i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

This particular programming technique is partly what is meant

by "structured programming". This term also implies an ability to

form nested groups of executable statements inside a program

or subroutine. On each level of nesting, a statement group

has the ability to behave as if it were a single executable

statement.

The overall effect of structured programming techniques is to

introduce an orderliness into the writing of programs that

not only makes them easier to read but also far less prone to

error. Most modern higher order languages possess constructs

out of which structured programs can be created: the constructs

of the HAL/S language have been defined deliberately with

structured programming in mind.

1,2 THE BLOCKSTRUCTUREOF HAL/S

The structure of a HAL/S compilation, as indicated below,

generally consists of a program block with so-called

procedure and function blocks nested within it.

p_ogram

blocks at] <

level 3

blocks at level 1

blocks at

level 2 _

1-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Function and procedure blocks constitute the HAL/S

interpretation of the "subroutines" of Section i.i.

The more deeply such a block is nested, the greater

the depth of detail of the problem solution it is

supposed to handle. The blocks at each level contain

executable code implementing the appropriate part of

the problem solution.

Both kinds of block are similar in that they contain

code which is executed by a call or "invocation",

and which returns execution to the caller on comple-

tion. However, procedure and function blocks differ

in the way they are invoked. A procedure is invoked

by a CALL statement, while a function (like its mathe-

matical counterpart) is invoked by its appearance in an

expression, and returns a result*.

Generally, the code in any block may invoke a procedure

or function block defined at the same level, or in a

surrounding outer level. The rules defining the

region where a block may be invoked are discussed later in
this Section.

The forms of procedure _ and function blocks and the

constructs for invoking them are described in Section ii

of the Guide. The form of the outer program block is
described in Section 3.

A procedure is therefore like a Fortran SUBROUTINE,

and a function is like a Fortran FUNCTION. Note,

however, that Fortran SUBROUTINES and FUNCTIONS

are always exterior to the program calling them,

whilst this is not true for HAL/S.

1-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

SCOPINGOF DATA

In HAL/S, all data must be defined in so-called "data declara-

tions". An important consequence of the structural properties

of HAL/S is its ability to place data declarations so as to bound

the regions in a program which may reference the declared data.

This feature is called "scoping".

Data declared at the program level may generally be used through-

out the entire compilation:

:_:;:_:_._:.:_:_÷:_:_:_..{_i:_:_

region where program
data declarations are

known; i.e. the "scope"

of program data
declarations.

program

inner blocks

1-4

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

In addition, any procedure or function block nested within a

program block may declare local data - data known only in that

particular block and in blocks nested within it - as indicated

below:

X@

:-.'-.'-_---Z-------------=-_--_"_--.--."." -

Y@

region where
data declared

local to X are

known

region where
data declared

local to Y are

known

SCOPINGOF BLOCKNAMES

The program block, and every procedure or function within it

are named: block names have scoping rules identical with

the data scoping rules already described. The name of any

procedure or function block is deemed to have been "declared"

in the surrounding block in which the procedure or function

is nested. This bounds the region where its name is known,

and therefore determines where it may be invoked. Thus,

the name of any procedure or function nested at the

program level is known anywhere in the program. However,

since in HAL/S recursion is not allowed, such a procedure

or function may be invoked from anywhere in the program

except inside itself, as indicated:

1-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A_

m
region where

block A may be

invoked

1-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138- (617) 661 1840

Similarly, inner procedures and functions may be invoked from

anywhere in the block enclosing them except within themselves.

In the following example, inner block B and C can only be

invoked from inside regions X and Y respectively:

X_

B@

Y@

C •---'-_

region where

block B may be

invoked

M
region where

block C may be
invoked

1-7

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

It should be noted that all forms of recursion in HAL/S

are illegal. The form of recursion not prevented by

the rules given above is that in which procedures P and

Q are not contained in each other, but P calls Q and Q

calls P.

It is also possible for a program

(or any block within it) to in-

voke entities outside the compila-

tion unit; i.e. other compilation

units. Procedures and functions

may be compiled independently for

this purpose.

See: Guide/15.

1-8

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

1,3 STATEMENTGROUPINGIN HAL/S

In HAL/S, the actual step by step solution of a problem is

performed by executable statements contained in the blocks

comprising the program. Sequences of executable statements

may be grouped together and treated as a single compound

statement. Such statement groups are said to be "well-

bracketed" - they begin with a special statement (a "DO"

statement), and end with another special statement (an "END"

statement). Execution of the sequence of statements in the

group can be controlled in various ways depending on the form

of the opening "DO" statement:

• the sequence may be executed once only;

• the sequence may be executed repetitively until specified
conditions are met;

• one statement in the sequence may be selected as the

only one to be executed.

Sequences of compound statements may also be grouped together

in the same way and, in turn, be treated as a more complex com-

pound statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S

constructs can substantially eliminate the need for a "GO TO"

statement (in the Fortran sense, for example), which from the

structured programming viewpoint is recognized to be "dangerous"

because it destroys the readability of a program, and makes it

more error-prone.

STATEMENTGROUPSAND GO TO STATEMENTS

The design of HAL/S minimizes the dangers of "GO TO" statements

by limiting the regions which can be branched to by them, in a way

analogous to the limits imposed on data by the scoping rules
described in Section 1.2.

1-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Consider a program containing nested groups of executable

statements as shown below:

0

program

outermost

group X

innermost

group Y

The region of legal destinations of "GO TO" statements contained

in group X are as indicated below:

0

0

gram

outermost

group X

region of

_egal des-
tinations

of GO TO's

in X

NN

1-10

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The region of legal destinations of "GO TO" statements contained

in group Y are as indicated below:

©

program

region of
legal des- _

tinations i_of GO TO's

in Y

innermost

group

It is evident from the examples that while groups can be branched

out of, or branched within, they may not be branched into.

INTERACTIONWITHBLOCKSTRUCTURE

Since procedure and fsnction blocks may appear anywhere in a program,

including inside statement groups, the problem arises of branches

by means of "GO TO" statements in and out of such blocks.

In HAL/S, the destinations of "GO TO" statements are labels attached

to executable statements. Because the scope rules for statement

labels are the same as for declared data, it follows that it is

impossible to branch into a procedure or function block. Additionally,

a rule is made that branches may not be made out of a block (even

though by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and return-to-caller

the only ways of entering and leaving procedures and functions,

which is in accordance with structured programming principles.

i-ii

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

2, HAL/S SYMBOLOGY

HAL/S source text has its own particular characteristics;

a specific character set, special combinations of characters

set aside as reserved words, and certain rules dictating
the form of statements. This section is an introduction

to these characteristics of the HAL/S Language.

2,1 THE CHARACTERSET

The HAL/S language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

+-*./I_=<>#@$,;:'")(_%¢

(blank)

This character set is a subset of the standard character sets

ASCII and EBCDIC.

Although the user really needs only the above character set

when writing a HAL/S program, there are additional special

characters which can be used in comments and in character

string literals (described later in this section).

[]{}'7

The output listings produced by a HAL/S compiler may use these

extra special characters for annotation.

2-1

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAM BRIDGE MASSACHUSETTS 02138. (617) 661 1840

2,2 RESERVEDWORDS,IDENTIFIERS, LITERALS

The HAL/S language uses four kinds of primitive elements as

basic constructs:

• RESERVED WORDS are a fixed part of the language and consist

'of combinations of upper case alphabetic characters;

IDENTIFIERS are user-defined names used for data or labels,

and consist of combinations of the alphanumeric characters;

• LITERALS express actual values, and can consist of any of the

symbols in the character set;

SPECIAL CHARACTERS serve as delimiters, separators or

operators, and consist of the non-alphanumeric

characters of the HAL/S set.

RESERVEDWORDS

Reserved words are words having a standard meaning in the HAL/S

language. As their name suggests, the user cannot use reserved

words as identifier names. There are two major categories of

reserved words:

KEYWORDS are used to express parts of HAL/S statements, for

example:GO TO, DECLARE, CALL, and so on. A complete

list can be found in Appendix E.

BUILT-IN FUNCTION NAMES are used to identify a library of

common mathematical and other routines, for example :

SINE, SQRT, TRANSPOSE, and so on. A complete list can

be found in Appendix B.

2-2

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACH[ISETTS 021,q8 • t617) 661-1840

IDENTIFIERS

An identifier name is a user-assigned name identifying an

item of data, a statement or block label, or other entity.

The following rules must be observed in the creation of

any identifier name*.

i. The total number of characters in the name

must not exceed 32;

2. The first character must be alphabetic;

3. The remaining characters may be either

alphabetic or numeric;

4. Any character except the first or last

may be an underscore (_).

Examples:

ELEPHANT AND CASTLE

A1 -- -- _ legal

P

IB I illegalXX

Some implementations of HAL/S may place extra restrictions

upon the names of identifiers. See appropriate User's
Manual.

2-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

LITERALS

The three basic kinds of literals described here are arithmetic,

character string, and Boolean• The utility of arithmetic

literals is obvious• In simple programming problems, character

string literals find most use in the generation of output•

Boolean literals are used to state logical truth or falsehood.

ARITHMETIC LITERALS express numerical values in decimal

notation. The generic form of an arithmetic literal
is:

mantissa _ _-exponent

+ddd. dddE+ddd

l•

•

3.

4.

.

ddd represents an arbitrary

number of decimal digits•

The exponent is optional•

The + signs are optional•

The decimal point is optional.

If absent, it is considered to be

to the right of the least signi-

ficant digit of the mantissa•

If the decimal point is present,

it may appear anywhere in the mantissa.

The minimum number of digits in the

mantissa, and in the exponent, if

present, is one. The maximum

number is implementation dependent*•

* See appropriate User's Manual.

2-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

0.123E16

45.9

-4

It is important to note that HAL/S makes no distinction

of type between a integral-valued literal and a fractional-

valued literal. Either integer (with possible rounding of

value) or scalar (i.e. floating-point) type is assumed

according to the context in which the literal is used.

The use of multiple exponents,

and of binary, hexadecimal or

octal exponents, is also allowed.

See: Spec./2.3.3.

2-5

INTERMETRICSINCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661 1840

CHARACTER STRING LITERALS consist of strings of characters

chosen from the entire HAL/S character set. The

generic form is:

'ccccccc'

i.

o

,

,

The quote marks delimit the

beginning and end of the

literal.

cccc represents an arbitrary

number of characters in any

combination.

Quote marks within the literal

must be represented by a pair

of quote marks to avoid con-

fusion with the delimiting

quotes.

The minimum number of characters

is zero (a 'null' string), the

maximum is 255*.

* This value may vary between implementations.

appropriate User's Manual.

See

2-6

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138- (617) 661 1840

Examples:

I!

'ONE two THREE'

'DOG''S'

If a literal consists of a single

character, or character sequence

repeated may times, a condensed

form of literal using a repeti-

tion factor may be used.

See: spec./2.3.3.

BOOLEAN LITERALS express logical truth or falsehood,

and are generally used to set up the values of

Boolean data items. Their forms are:

TRUE _ expressing truth, or

ON _ binary "i"

FALSE [expressing falsehood

OFF _ or binary "0"

Literal strings of binary values

also exist.

See : Guide/17.1.

2-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

2,3 FORMATOF SOURCETEXT

HAL/S is a "stream-oriented"language, that is, statements

may begin anywhere on a line (or card), and may overflow

without special indication onto succeeding lines or cards.

Several statements may be written on one line (or card) as

required.

HAL/S is among the very few languages which permit subscripts

and exponents to be represented as they are mathematically,

using lines below and above the main line respectively as needed.

This multi-line format is an optional alternative to the HAL/S

single-line format.

Even when multi-line format is not used, the first character

position of each line (or card) is reserved for a symbol

denoting the kind of line format, subscript, main, or

exponent.

SINGLE-LINEFORMAT

In single-line format, the first character position of each line

is left blank, denoting a main line. An M can alternatively

be used but is generally not preferred by users.

• EXPONENTS are denoted by the operator **

Example:

t+2
x is coded as:

:M X** (T+2)
J

SUBSCRIPTS are denoted by parenthesizing the subscript and

preceding it with the symbol $.

Example:

is coded as:
ai+l

!M AS(I+1)
!
J

I

2-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

MULTI-LINEFORMAT

In multi-line format, the first character of a main line

is either left blank or M is inserted as before. The first

character of an exponent line is E, and that of a subscript

line is S.

EXPONENTS are written on an exponent line (E-line) immediately

above the main line.

Example :

x t+2 is coded as:

.E T+2

•M X

SUBSCRIPTS are written on a subscript line (S-line) immediately

below the main line.

Example:

4

is coded as:
ai+l

'M A

•S I+l
I

When using multi-line format, care must be taken to ensure that

nothing on the E- and S-lines overlaps anything on the M-line.

|

Exponents of exponents and sub-

scripts of subscripts use extra

subscript and exponent lines.

Special rules apply if exponents

are subscripted, or if subscripts

possess exponents.
See: Spec./2.4.

i

2-9

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2,4 STATEMENTDELIMITING

As Section 2.3 indicated, HAL/S statements may be written in

free form without regard for line (or card) boundaries. Be-

cause of this there is the need to explicitly indicate the

end of each statement with a special symbol. HAL/S uses a

semicolon for this purpose. The following statements arbitrarily

selected from the language show the placement of the semicolon.

Examples :

DECLARE I INTEGER;

I = I + i;

CALL P(I,J);

2,5 COMMENTSIN HAL/S

The use of comments is a sine qua non of good programming practice.

HAL/S possesses two mechanisms for the inclusion of comments in a

compilation.

IMBEDDED COMMENTS may be placed anywhere on main, exponent

or subscript lines of HAL/S text.

• COMMENT LINES may appear between main, exponent and subscript

lines of HAL/S text.

IMBEDDEDCOMMENTS

An imbedded comment takes the form:

/* ... any text (except */) ... */

2-10

INTERMETRICSINCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 (612) 661 1840

Such comments may appear between HAL/S statements or

imbedded in a statement. They may not appear in the middle

of a literal, reserved word, or iden-_fier. Nor may they

overlap any source text or other comments on other lines of a

group written in multi-line format. As far as the sense of

the source text is concerned, an imbedded co_ent is treated

as if it were a string of blank characters.

Examples:

!
! M
I
!
t M

I s
I
I
J

X = X + i; /, ADD ONE TO X */

X = Y;

1 /* BAD */

illegal-controverse overlap rule

COMMENTLINES

Comment lines are input lines specially reserved solely for

comments by placing the character C in the first character

position of the line. The rest of the line may contain any

desired text.

Examples:

M X= X + i;

C ADD ONE TO X

C THEN CARRY ON

2-ii

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3, A HAL/SCOMPILATION- THE PROGRAMBLOCK

The structuring of HAL/S programs was dealt with on the conceptual

level in Section i. Section 3 begins to interpret this infor-

mation in terms of actual HAL/S language constructs.

For the purposes of Part I, an entire HAL/S unit of compilation

is known as the "program block"• The term "block" has a special

connotation in this Guide• It is taken to mean a coherent

body of data declarations and executable statements enclosed in

statements delimiting its opening and closing, and identified
with a name.

3,1 OPENINGAND CLOSINGTHE PROGRAMBLOCK

The first statement of a HAL/S program is a statement defining

the name of the program and opening the program block. The last

statement of a HAL/S program is a statement closing the program

block. Between the two are all the statements comprising the body

of the program.

PROGRAMOPENING

The statement opening a program block takes the form:

•

I
, l_gZ : PROGRAM;
i

!

_abel is any legal identifier

name, and constitutes the name

of the program.

3-1

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

PROGRAMCLOSING

The program block is closed with the statement:

.

.

!

!
, CLOSE 2_bg£ ;
!

I

The identifier lab6£ is

optional.

If f_b_ is supplied, it

must be the program name,

i.e. the label, on the

opening statement of the

program block.

Example:

' TEST: PROGRAM;
!

0

b

J

i

CLOSE TEST;
!

---ebody of program goes in here

3.2 POSITIONOF DATADECLARATIONS

Normal HAL/S programs require the use of data. The names used

to identify this data must be declared before use by the means

of data declaration statements. Data declarations (and,

additionally, certain other kinds of statements) must be

placed after the program opening statement and before the

first executable statement.

3-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHtJSETTS 021:_8 . (61/') 661-1840

Example :

' TEST: PROGRAM;
I

I ata
!

I

!

|

: executable

!

! CLOSE TEST;

declaration statements

statements

3.3 FLOWOF EXECUTIONIN THE PROGRAM

The program begins execution at the first executable state-

ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.

Unless statement groups, branches, or conditional statements
intervene, execution is sequential. Finally, the path either

reaches a statement terminating execution of the program, or

reaches the closing statement of the program block, which has

the same effect.

As described in Section I, procedure and function definition

blocks may be interspersed between the statements in a program

block. The only way of executing such blocks is by explicit

invocation: if they are encountered in the path of execution

they are passed over as if non-existent.

3-3

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Example:

TEST: PROGRAM;

,//
!

I

I
I

oooo •

,/:

I •
i •
o •

ooooo

path of I
execution i

I
I

I
I

I

I
I •

I CLOSE; block invoked
, kand returned

from

data

declaration

:statements

itable

statements

:edure

block

3-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4, DATA DECLARATION

Programming largely consists of the manipulation of numerical

data. The diversity of the data types in a language determines

its utility for any required task. HAL/S contains an exceptionally

diverse set of data types.

Identifiers of the kind described in Section 2 are used to name

items of data. Identifier names used to represent data items

must* be defined in data declarations appearing in the appropriate

program, procedure or function block. The effect of placing

data in different blocks is described in Section i. The position

of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4,1 HAL/S DATA TYPES

In the HAL/S language, arithmetic data of the following types

can be declared:

• INTEGER for the representation of integer-valued quantities;

• SCALAR for the representation of "floating-point" quantities;

• VECTOR for the representation of algebraic row or column

vectors (without distinction), and each element of which is

a scalar quantity;

• MATRIX for the representation of algebraic matrices, and each

element of which is a scalar quantity.

* The HAL/S language prohibits the use of implicitly declared

data items,considering it to be an undesirable programming

practice.

4-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

These arithmetic data types may be specified in either single

or double precision. In the case of integer, the precision

determines the maximum absolute value the identifier may take

on. In all other cases, it determines the number of signifi-

cant digits in the mantissa of the value.

In addition, HAL/S also possesses the following data types:

• CHARACTER for the representation of strings of text;

BOOLEAN for the representation of binary-valued (logical)

quantities.

It is possible to declare arrays (or tables) of any of the six

above types.

HAL/S possesses other data types.

The Boolean data type is a degenerate

form of the HAL/S "bit string" data
type.

See : Guide/l 7.

_L_L/S also possesses hierarchical

organizations of data items of any

type, known as "structures"

See : Guide/19.

4,2 SIMPLEDECLARATIONSTATEMENTS

Data declaration statements define identifiers used to name data.

The simplest forms of declaration statement for each data type

listed above are examined on the following pages.

4-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

INTEGER

I
t DECLARE name

i DECLARE nam£

t DECLARE nam£
!

INTEGER;

INTEGER SINGLE;

INTEGER DOUBLE;

I. In each of the forms nam£ is any legal

HAL/S identifier.

•

o

•

Presence of the keyword SINGLE specifies

single precision.

Presence of the keyword DOUBLE specifies

double precision.

Absence of either keyword implies default

of single precision.

For the integer data type, single precision usually implies

halfword and double precision fullword, depending on the

implementation*•

Examples:

t

I DECLARE Ii INTEGER;

i DECLARE BIG I INTEGER DOUBLE;

i

* See appropriate User's Manual.

4-3

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

SCALAR

i

: DECLARE name SCALAR;

DECLARE name SCALAR SINGLE;
i

i DECLARE name SCALAR DOUBLE;
I

i. In each of the forms, name is any

legal identifier•

B

•

.

Presence of the keyword SINGLE specifies

single precision•

Presence of the keyword DOUBLE specifies

double precision.

Absence of either keyword implies a de-

fault of single precision.

5. The keyword SCALAR may be omitted.

Double precision usually implies increased range of exponent

and increased number of digits in the mantissa, but it is

implementation dependent*.

Examples:

DECLARE SI;

DECLARE $2 SCALAR;

DECLARE $3 SCALAR DOUBLE;

* See appropriate User's Manual.

4-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6T7) 661-1840

MATRIX

l.

2.

.

o

i

: DECLARE namz

0'DECLARE namz
J

; DECLARE _mZ

MATRIX (m,n) ;

MATRIX (m,n) SINGLE;

M_TRIX (m,n) DOUBLE;

In each form name" is any legal identifier.

Keywords SINGLE and DOUBLE have the same

significance as for scalar and v@_tor types.

m and n denote respectively the number of

rows and columns in the matrix. They must

lie in the range 1 < m, n Z 64*.

If the size specification (m,n) is absent,
a 3x3 matrix is assumed.

Examples:
!
i

. DECLARE M1 MATRIX(2,4);
!
, DECLARE M2 MATRIX(4,5) DOUBLE;

' DECLARE M3 MATRIX;

' _a 3x3 matrix

This value may vary between implementations.

appropriate User's Manual.

See

4-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

VECTOR

DECLARE n_m£ VECTOR (n) ;

_,DECLARE namz VECTOR (n) SINGLE;
, DECLARE •n_mz- VECTOR(n) DOUBLE;
B

i. In each form namz is any legal
identifier.

•

•

•

Keywords SINGLE and DOUBLE have the

same significance as for scala_ type.

n specifies the length of the vector

and must lie in the range 1 < n Z 64*.

If the length specification (n) is

omitted a length of 3 is assumed.

Examples :
i

|

' DECLARE Vl VECTOR (I0) ;I

, DECLARE V2 VECTOR (3) DOUBLE;
' DECLARE V3 VECTOR;
a

_a 3-vector

This val_e may Vary between implementations.
User' s Manual.

See appropriate

4-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CHARACTER

i•

|

|

, DECLARE n_e. _

|

CHARACTER (n) ;

name is any legal identifier•

• n specifies the maximum length of the text

string that the data type may carry. (i.e.

the maximum number of characters)• It must

lie in the range of 1 { n < 255*.

0 The actual length of the string of text

carried may vary during execution between

zero (a "null" string) and the maximum n.

Example:
J

!

,DECLARE Cl CHARACTER(80) ;
!

|

BOOLEAN

i•

!
IDECLARE name BOOLEAN;
0

!

no.too, is any legal identifier.

Example. -
l

:DECLARE B1 BOOLEAN;
b
Q

This value may.vary between implementations•

appropriate User's Manual.

See

4-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ARRAYS

The properties of a data item, (its type, precision, and

size), as expressed in its declaration are called the

"attributes" of the data item. In any of the above declara-

tions, the attributes are specified following the name of

the data item.

To declare an array of any data type an ARRAY specification

is inserted between the name of the data item and its

attributes:

i DECLARE m_mz ARRAY(n) _.,_bu._ ;

i_ _tt_/bu_ stands for any legal form of

attributes for any data type described.

It is possible that none appear.

2. n denotes the number of elements in the

array (i.e. entries in the table) and

must lie in the range 1 < n < 32768*.

Examples :

DECLARE AS1 ARRAY(500) SCALAR;

DECLARE AM1 ARRAY(20) MATRIX(4,4);

HAL/S also supports multi-

dimensional arrays of any

data type.

See: Guide/18.1.

* This value may vary between implementations. See

appropriate User' s Manual.

4-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE" CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

COMPOUNDDECLARATIONS

If a program contains declarations of many data items it is

tedious to repeat the keyword DECLARE in every declaration.

Many separate declarations may be condensed into one compound
declaration as shown below.

Example :

i

!

I
I

I
I
I
I

DECLARE S;

DECLARE I INTEGER DOUBLE;

DECLARE M3 MATRIX;

DECLARE M6 MATRIX (6,6) ;

DECLARE B BOOLEAN;

DECLARE C ARRAY (5) CHARACTER (20);

DECLARE V ARRAY (3) VECTOR;

separate declarations

DECLARE S,

I INTEGER DOUBLE,

M3 MATRIX,

M6 MATRIX (6,6) ,

B BOOLEAN,

C ARRAY (5) CHARACTER (20) ,

V ARRAY (3) VECTOR;

equivalent compound
declaration

Note the commas separating the declaration of each data item.

If the identifiers in a compound declaration have some

attributes in common, a third, even more compact form called

a factored declaration is possible. This form is as shown
below.

Example:

DECLARE Vl VECTOR(3),

V2 VECTOR(3) DOUBLE,

V3 VECTOR(3) DOUBLE;

can be rewritten in the factored form:

DECLARE VECTOR(3), Vl,

V2DOUBLE,

V3 DOUBLE;

Note the comma separating the factored attributes and the first
declared data item.

4-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4,3 INITIALIZATIONOF DATA

A HAL/S data item of any type may be initialized by incorporating

the appropriate specification into its declaration. The form

of such a specification differs depending on whether the

data item is "uni-valued" or "multi-valued".

• UNI-VALUED data items are those having only one element:

unarrayed scalars, booleans, and characters.

MULTI-VALUED data items are those having more than one

element: unarrayed vectors and matrices, and arrayed

data items of any type.

In either case, the specification is placed after the type,

precision, and size attributes of a declaration. This positioning

will become apparent in the examples to follow•

UNI-VALUEDDATAITEMS

The two variations of the construct for initializing uni-valued

data items are:

INITIAL (ua/_e)

CONSTANT (u_u_)

i• The two forms have the same effect in

that the data item is initialized to

the literal indicated by uaZuz .

. The form using the keyword CONSTANT is

required_only if the user wishes never

to change the initial value during
execution*•

• The type of the literal v_£ must

be compatible with the type of the data

item as determined from the following

table:

data tvpe

CHARACTER

BOOLEAN

INTEGER }SCALAR

literal value
in

character string

boolean

arithmetic

* In many respects a data item initialized this way is akin to

a literal.

4-10

INTERMETRICS INCORPORATED .701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Examples:

I
]DECLARE A SCALAR INITIAL (3),

B SCALAR CONSTANT(4.5E-3),

0 C CHARACTER(80) INITIAL('YES'),

D BOOLEAN INITIAL(TRUE);

I
] Note: initial working length of C becomes 3.

MULTI-VALUEDDATAITEMS

There are two corresponding variations of the INITIAL/CONSTANT

specification for multi-valued data items:

i•

•

o

INITIAL (ua2_e I_ , u_z22,)
CONSTANT (ua2/_£1 , ua2/_z ,)

The meaning of the keyword CONSTANT is

the same as for uni-valued data items•

The type of each literal v_e must be

compatible with the type of the data item,

as determined from the following table.

data type

CHARACTER

BOOLEAN

INTEGER

SCALAR

VECTOR

MATRIX

literal value

character string
boolean

arithmetic

The number of literals in the list must

equal the total number of elements implied

by the data declaration.

Note that if all the elements of a multi-valued data item are to

be initialize_--to the same value then the form used for uni-valued

data items may be used.

4-ii

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples .-

DECLARE V VECTOR INITIAL (1,2,3.5)

S ARRAY(2) CONSTANT(I,0),

T ARRAY(2) VECTOR(2) INITIAL(4.7,-5.3,0,0) ;

DECLARE V VECTOR INITIAL (0),

S ARRAY(100) INTEGER INITIAL(256);

i

a lllelements of these data

items are identically
initialized.

ORDER OF INITIALIZATION

To complete the specification of initialization, the order of

initialization of the elements of multi-valued data _tem_---s

needs to be defined.

The following ordering rules, though applied here to the

initialization of multi-valued data items, holds truewhen-

ever the ordering of elements is called into question.

• VECTOR data items are initialized in order of increasing
index.

• MATRIX data items are initialized row by row in order of

increasing index.

ARRAY data items are initialized array element by array element

in order of increasing index. Where the array element are

themselves multi-valued, each array element in turn is

initialized completely according to the previous rules before
going on to the next.

Example :*

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(I,2,3,4,5,6,7,8);

if M 1 is the first array element, and M 2 is the second, then:

In this and many following examples in the Guide, the

symbol E means "has the value", or "having the value".

4-12

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Literal values appearing in

initial lists may be expres-

sions computable at compile

time rather than literals.

See:Guide/Appendix D.

Additional more compact initial-

ization forms are available if

only partial initialization is

required, or if subsets of the

initial values are identical.

See: Guide/16.

4-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

5, REPLACESTATEMENTS

Often in writing a HAL/S program, it may be necessary to

use the same language construct, identically repeated,

many times. To avoid the tedium involved in rewriting
it each time it is required, a so-called "replace name"

can be defined to represent symbolically the text of
the construct. The replace name can then be written in

place of the construct each time, and the HAL/S compiler
will perform the necessary substitutions.

The use of such replace names is especially useful in

cases where the constructs they represent may be required

to be modified from compilation to compilation.

The definition of the replace name and the text it substitutes

is accomplished by a REPLACE statement.

5,1 THE REPLACESTATEMENT

The REPLACE statement is placed together withthe data

declarations of the program, or other block in which it
is to be used. It takes the form:

io

o

.

.

I
I REPLACE m_mz BY "XXXXXXX _
I

name is the replace name chosen to

symbolically represent the text. It
may be any legal identifier name.

XXXXXXX represents the HAL/S source
text which is to be substituted. The

text is delimited by double quote

marks, and must be written in single
line format.

XXXXXXX may be any legal source text
of arbitrary length. Imbedded double

quote marks must be represented as a

c_niruOf double quote marks to avoid
sion with the delimiters.

The text must not begin or end in the

middle of a reserved word, identifier,

literal, or imbedded comments.

5-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:
i

|

|

i

f

REPLACE OUTPUT BY "WRITE(6)";

REPLACE INCREMENT BY "X=X+I; " ;

5,2 USINGREPLACESTATEMENTS

The following examples show the way in which the symbol

substitution defined bythe REPLACE statement is used.

Examples:
!

!

i

I

I

!

i

!

REPLACE DV BY "VECTOR DOUBLE INITIAL(0)";

DECLARE VECI DV,

VEC2 DV,

VEC3 DV;

- by expansion of DV it is evident that

VEC1, VEC2, VEC3 are all double precision

vectors initialized to zero.

i

I

I

• I

I

I

I

, REPLACE N BY "4";

' DECLARE Vl VECTOR(N),

' M1 MATRIX (N,N) ,
i

, M2 MATRIX (2 ,N) ;

- this shows the utility of the REPLACEr

statement in making it easy to change the
isizes of several vectors and matrices

simultaneously.

REPLACE X BY "VECTOR (2) ";

REPLACE Y BY "ARRAY(5) :X";

- this is an example of nested sub-

stitutions. The expansion of Y is

ARRAY(5) VECTOR(2).

REPLACE X BY "REPLACE Y BY""Z"""-,

X;

DECLARE Y SCALAR;

- although this is' a legal use of REPLACE statements, it

does not lend itself to clarity. The sequence of state-

ments culminates in Z being declared as a scalar data

item.

5-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

A REPLACE statement takes effect only after it appears•

It does not modify the entire block, only that section that

follows its appearance.

Example:
I

I DECLARE Vl VECTOR(N) ;

! REPLACE N BY "4";

DECLARE V2 VECTOR(N);

I "

- the REPLACE statement will only be

effective starting with the second

declaration statement. N is un-

known in the first declaration and

compilation would detect the error.

Care must be taken in using REPLACE statements because

the ways in which they are affected by the block structure

of the HAL/S program in which they appear are not always
obvious

Example:

REPLACE X BY "Y";

DECLARE X SCALAR;

l

i

_Program

_eProcedure block

- the user must remember

that the X of the local

declaration inside the

procedure block is still

subject to the REPLACE

statement at the program

level.

5-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The only case in which a REPLACE statement in an outer block

becomes ineffective in an inner block is when the inner block

has a REPLACE statement in it with the same name.

Example:

_Program

ce block

block

@
@

region where X is

replaced by Y

region where X is

replaced by Z

Replace statements may also

possess parameters, turning

them into a sophisticated

macro expansion facility.

See: Guide/29,

5-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

6, DATA REFERENCINGAND SUBSCRIPTING

Any appearance of the name of a previously-declared data item
in an executable statement constitutes a reference to its value

(and possibly causes a change in its value)*. Sometimes it is

necessary to be able to reference elements of vectors, matrices,

and arrays, and also to reference parts of character strings.

HAL/S has a wide range of subscript forms designed for this

purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

COMPONENT SUBSCRIPTING allows the user to select elements

or subsets of elements from vectors and matrices, and to

select substrings from character data items.

ARRAY SUBSCRIPTING allows the user to select elements or

subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or

both kinds of subscripting may be affixed to it.

6,1 SUBSCRIPTSOF UNARRAYEDDATATYPES

Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscript-

ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts

for the remaining types, - character, vector, and matrix - are

now each described in turn.

This Section, for convenience, includes appearance causing

change in value under the term "reference", even though

this is not the most usual meaning of the term.

6-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

CHARACTER

In a character data item, character positions are indexed left

to right starting from i. In the subscript forms given below,

STRING represents an unarrayed data item of character type with

current working length L.*

• To select the _th character from STRING:

i

STRING

me is an integer expression in

the range 1 _ e < L.

• To select e characters from STRING, starting from the

8th:

STRING
AT 8

i. _ and 8 are integer expressions.

2. 8 is in the range 1 < 8 _ L.

3. e is in the range 0 _ e _ L - 8 + i.

* In the case where reference of a subscripted character data

type causes a change in its value (e.g. on the left hand side

of an assignment),somewhat different interpretations of the

subscript forms hold true. An account of these is given in

Section 8.3.

6-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

• To select a substring starting with the _th character

of STRING, and ending with the 8th:

STRING
sTO 8

i. _ and B are integer expressions in

the range 1 _<(_, 8)< L.

2. 8>u.

Examples:

if C - 'ABCDEF' then"

C 5 - 'E'

C 2 - 'BC 'AT 2 -

C4 = 'DEF 'TO 6 -

VECTOR

Elements of a vector are indexed starting from i. In

the following subscript forms, VEC represents an unarrayed

vector data item of length L.

• To select the eth element from VEC:

Ze

VEC

is an integer expression in the

range 1 _< _ <_ L.

2. The resulting data type is scalar.

6-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• To select an e-vector partition starting from the 8th

element of VEC:

VEC
sAT 8

lo

•

is an integer literal value in

the range 2 _ e < L.

8 is an integer expression in the

range 1 _ 8 < L - _ + i.

• To select a partition starting from the _th element of

VEC and ending with the 8th.

VEC
TO 8

• and 8 are integer literal values

in the range 1 <(_, _ L.

2. B > _.

Example s :

if V -- li[_]..7[_ then:

V 1 - 4.5 (scalar)

V3 TO 4 - .7

V2 AT 1- [4_5] (2-vector)

6-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MATRIX

Rows and columns of a matrix are indexed starting from i.

Any matrix subscript must consist of a row subscript followed

by a column subscript. In the following subscript forms, MAT
represents an unarrayed M x N matrix data item.

To select the element of MAT common to the uth row and
8th column:

I. _, 8 are integer expressions.

2. e is in the range 1 < e _ M,

and 8 is in the range 1 _ 8 _ N.

3. The resultant data type is SCALAR.

• To select the uth row of MAT:

l.

.

3.

is an integer expression in the

range 1 _ e < M.

The resultant data is N-vector.

If the asterisk is replaced by a

TO- or AT- subscript under the

-rules given for vector data t_es,
a vector partition from the e_**

row may be selected.

6-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• To select the 8th column of MAT:

i•

•

3.

8 is an integer expression in the

range 1 < 8 < N.

The resultant data type is M-VECTOR.

If the asterisk is replaced by a

TO- or AT- partition under the

rules given for vector data types,

a vector partition from the 8th

column may be selected•

• To select a e x y matrix partition starting from the

8th row and 6th column of MAT:

MAT
AT 8, T AT 6

l•

•

•

•

e, y are integer literal values in

ranges 2 _ e < M, 2 < y < N

respectively•

8,7 are integer expression in

ranges 1 < 8 < M - _ + i,

1 < _ < N - T + 1 respectively.

Either or both the AT- subscripts

may be replaced by TO- subscripts

under rules already given by vector

and matrix types.

Either of the AT- subscripts may in

addition be replaced by an asterisk

if all M rows or all N columns are

to be included in the partition.

6-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

if M -

M 2 ,3

M,,I£

.i 1.2
2.1 2.2

.i 3.2

2.3

2.

M2, 2 TO 3

M,, 2 AT 1

M1 TO

- [.i
2.1

3.1

2, 1 TO 2

3

(scalar)

(3-vector)

(2-vector)

then:

i. 2 | (3x2 matrix)
2.2 J3.2

[i.i.i 1 2]2[(2X2 matrix)

6-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

6,2 SUBSCRIPTSOF ARRAYEDDATATYPES

Arrayed data types, i•e• those whose declarations contain

an array specification, may possess array subscripting.

If the data types are vector, matrix, or character, then

they may, in addition, possess component subscripting.

ARRAYSUBSCRIPTINGONLY

Arrays are indexed starting from i. In the array subscript

forms given below, TABLE represents an array of length L

of any data type.

• To select the eth array element from TABLE:

TABLE

i•

•

is an integer expression in the

range 1 _ e < L.

The colon is o_tional if the data

type of TABLE is integer or scalar•

To select a sub-array of length _ starting from the 8th

array element of TABLE:

TABLE
AT 8:

l•

•

•

is an integer literal value in the

range 1 _< e _< L.

8 is an integer expression in the

range 1 _< 8 < L - _ + i.

The colon is o_tional if the data

type of TABLE as integer or scalar•

6-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

To select a sub-array starting from the _h array

element of TABLE and ending with the 8 th.

TABLE
TO 8:

i. e, 8 are integer literal values

in the range 1 <(e, _ < L.

2. 8> _.

3. The colon is optional if the data
type of TABLE is integer or scalar.

Example s :

if T is a 4-array of booleans with

T E (TRUE FALSE TRUE TRUE) then:

T 2 : E FALSE (unarrayed)

T3 TO 4: -= (TRUE,TRUE) (still arrayed)

if T is a 4-array of integers with
T 5 (i 2 3 4) then:

T 2 E 2 (unarrayed) I

T3 TO 4 E (3,4) (still arrayed)

optional colon

omitted

if C is a 3-array of characters, with

C E ('YES' 'NO' 'MAYBE') then:

C 1 : E 'YES'

C 2 TO 3:
('NO','MAYBE')

(selects first array element)

(still arrayed)

6-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661 1840

ARRAYAND COMPONENTSUBSCRIPTING

If TABLE represents an array of vector, matrix, or character

data type, then the following rule shows how array and

component subscripting are juxtaposed.

•

•

TABLE

_" o..omponzn,t

array represents array sub-

scripting of any of the forms

previously described.

c0mp0n_t represents any form

of component subscripting legal

for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required

to distinguish and separate array and component subscripting.

Examples:

if C is a 3-array of characters, with

C £ ('YES' 'NO' 'MAYBE') then:

C 3 = ,y,:3 -
(selects 3rd character from third

array element)

if M is a 2-array of 2x2 matrices with

M2:2, 2 = 8

I) then:

(element in 2nd row, 2 nd column

of second array element)

6-10

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

Apparently, the colon should be

optional on Boolean data types

also. It is not because the

Boolean data type is a degener-

ate case of a bit string data

type which may possess com-

ponent subscripting.

See: Guide/17.3.

COMPONENTSUBSCRIPTINGONLY

When an arrayed data item of vector, matrix or character

type is required to be given only component subscripting,

array subscripting cannot be totally omitted. Rather, it

must be replaced by an asterisk. Let TABLE represent such

a data item; the subscripting form is then required to be:

TABLE
,:_ompone, nt

lo component represents any form

of component subscripting legal for

the data type of TABLE, as described

in Section 6.1.

Examples:

if C is a 3-array of characters with

C 5 ('YES' 'NO' 'MAYBE') then.8 ,

C,: 1 ---- ('Y','N','M') (makes 3-array from first character

of each item)

if M is a 2-array of 2x2 matrices with

M -- (1,5)
,:i,i

M.:., 2 -

then:

(2-array of scalars)

(2-array of 2-vectors)

6-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HAL/S allows more general forms

of subscript expressions than

just those stated above. See

Spec./5.3, In particular, a

symbolic form of reference

to the last array or other

element of a data type is

allowed. See Spec ./5.3.2.

More complex subscripting

forms apply to multi-dimen-

sional arrays, See Guide/

18.3; and to the organization

of data called "structures",

See Guide/19.6

Subscript forms stated to be

llherals may in fact be expres-

sions computable at compile

time. See Guide/Appendix D,

6-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7, EXPRESSIONS

Section 6 dealt with the referencing of declared data items.

At this point it is appropriate to describe how the values of

these data items can be manipulated. In HAL/S the construct

which specifies operations on data items is called an

"expression"*. In many cases it is very close in form to

the generally accepted notion of a mathematical expression.

Generally, expressions consist of sequences of operations,

possiblyparenthesized in places to override the precedence

rules of HAL/S. Each operation is comprised of one or two

operands and an operator. The very simplest form of expres-

sion is one in which there are no operations and just one

operand. An operand may be a data item, possibly subscripted,

or a built-in function, or an explicit conversion function.

This section begins by describing the legal HAL/S operations,

and then continues to show how they are combined into

expressions.

Previous sections of the Guide have divided data items and

literals into three broad classes: arithmetic, character,

and Boolean. It is convenient to divide the operations to

be described into the same three classes. The type of an

expression is the type of the value resulting from its

execution, and may, in general, be different from the types

of some of its operands.

7,1 ARITHMETICOPERATIONS

Arithmetic operations are the most numerous of all operations

in the HAL/S language. They comprise operations on vector,

matrix, integer, and scalar data types. HAL/S recognizes

the following operations:

The storing of the result of a HAL/S expression into a

data item is performed by an ASSIGNMENT statement, of

which the expression forms a part.

7-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Symbol

(blank)

*

/

+

Purpose

exponentiation, inversion,

transposition

multiplication

vector cross product

vector dot product

division

addition

subtraction, negation

E |
NEGATION

Negation is a unary operation applicable to _ny arithmetic
data type :

.'4

le

e

Symbolic form: - R

The legal data types for R are given

by the following table:

R-type

MATRIX

VECTOR

SCALAR

INTEGER

Negation of vector and matrix types

implies element-by-element negation.

Examples:

if I is an integer and I _ 5

then -I -- -5

if V is a 3-vector and V _ [-iii]

and- V---[_!!!]

7-2

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

ADDITIONAND SUBTRACTION

Addition and subtraction can only take place between compatible

arithmetic data types:

Symbolic form: L ± R

i.

o

o

e

.

The legal combinations of data types

are indicated by the following table:

L -type

MATRIX

VECTOR

SCALAR }INTEGER

R-type

MATRIX

VECTOR

SCALARINTEGER

Operations on matrix and vector operands

imply element-by-element addition and
subtraction.

The operands in a matrix addition or

subtraction must have the same row and

column dimens--_s.

The operands in a vector addition or

subtraction must have the same lengths.

In a mixed integer-scalar operation, the

result is scalar. The integer operand is

first converted to single precision

scalar.

7-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example s:

If I is integer with I _--5

S is scalar with S - -4.2

then

I + 1 - 6

I + 0.5 _= 5.5

S + 1 _=-3.2

I - S _=9.2

(integer result)

(scalar result)

(scalar result)

(scalar result)

E!

if Vl is a 3-vector with VI_=

V2 is a 4-vector with V2 _= 5

then the operation Vl + V2 is illegal because the lengths of

Vl, V2 do not match;

but

is legal because subscripting

of the R operand has produced

a 3-vector.

Using S, Vl above,

S + Vl is illegal because the types are incompatible;

but S + Vl 3 _=-1.0 is legal and has a scalar result because
subscripting has changed the R operand to

scalar type.

7-4

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

if M1 is a 3 x 2 matrix with M15

[00 0]-i[5 -I.0

0

M2 is a 2 x 2 matrix with M2
05 -05]Ii[0 i[0

then M1 - M2 is illegal because the row dimensions of the

operands do not match;

but, MI2 AT i,, - M2 -I-1.50"5 -2[051
is legal because the

number of rows in the

L operand have been

reduced to 2 by sub-

scripting.

DIVISION

In division, the dividend may be any data type, but the divisor

must either be integer or scalar.

Symbolic form: L /R

I.

.

.

The legal combinations of data types are

given by the following table:

i -type

MATRIX

VECTOR

SCALAR

INTEGER

R -type

SCALARINTEGER

If the dividend is of matrix or vector

type, element-by-element division by the

R operand is implied.

If either or both operands are of integer

type, they are first converted to scalar

type.

7-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

1/2 _ 0.5

if V is a 3-vector with V _ [_i!16

then V/2 5 [i!!]

if M is a 2 x 2 matrix with M 5 I10120

S is a scalar with S _ 0.5

then

(both integer operands converted to scalar)

S/M is illegal since the R operand may not be of matrix

type,

but M/S -= [20140 -i.011.2

DOT PRODUCT

The HAL/S dot product operation corresponds to the mathematical

dot or inner product of two vectors. In mathematical notation:

s = <ur v> ors = uTv

where u, v are column vectors and T denotes the transpose.

Note that HAL/S does not require the user to distinguish between

row and column vectors because the position of the operand in the

operation is sufficient in itself to allow it to be interpreted
as one or the other.

Symbolic form: i . R

i. The operands of the dot product must be
as shown:

L-typ e I R-type

VECTOR I VECTOR

2. The lengths of each operand must be

the same.

3. The result is of scalar type.

7-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example :

If V is a 3-vector with V £ [_!!!]

then V.V -- 1.5

CROSSPRODUCT

The HAL/S cross product operation corresponds to the mathematical

vector cross product in 3-dimensional Euclidean space:

if w is perpendicular to u, v

8_ as shown,

and lwl = lul Ivlsin 8
then w = u x v

Symbolic form: L * R

i. The type of the operands must be vector:

t -type I R,-type

VECTOR I VECTOR

2. Both operands must be of length 3.

3. The result is a 3-vector.

Example :

if Vl is a 3-vector with Vl -= I!.51

LU J

V2 is a 3-vector with V2 - [i].5

then Vl * V2 - [i 1.25

7-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MULTIPLICATION

The HAL/S language has no explicit symbol for multiplication:

the adjacency of two operands signifies this operation. Multi-

plication can take place with arithmetic operands of any type:

• If operand types are either integer or scalar, multiplication

in the regular arithmetic sense is implied; ...CASE Q

• if one operand is integer or scalar, and the other vector or

matrix, then element-by-element multiplication is implied;

• ..CASE Q

• if both operands are vectors then the outer product is implied,

the result being a matrix; ...CASE Q

• if both operands are matrices, the matrix product is implied;
...CASE Q

if one operand is a matrix, and the other a vector, then

a vector-matrix product is implied, the result being a /_h

vector. ...CASE

The symbolic form for multiplication is as shown:

•

Symbolic form: i R

At least one blank character must

separate the L and R operands.

The additional rules applicable to each of the cases described above

are now listed in turn.

7-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CASE Q

•

•

The operand types are:

i-type I R -type

INTEGER_I _ INTEGER

SCALAR _l! SCALAR

If both operands are integer, the

result is integer, otherwise it is
scalar.

If one operand is integer, then it

it first converted to single precision
scalar.

Example:

If I is integer with I 5 10

then 1.5E-2 I _ 0.15 (scalar result)

CASE Q

2. The operand types are:

.

.

i -type

INTEGER_
SCALAR)

VECTOR }MATRIX

R -type

VECTORMATRIX

INTEGER
SCALAR

Element-by-element multiplication

of the vector or matrix is implied•

If an operand is of integer type, it

it first converted to single precision
scalar.

7-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

E!

Examples :

if S is scalar with S = 1.5

M is a 2 x 2 matrix with M -=I 0
!--0 ol

 enS. i0- .15

and M S -=| 0
l-0.15

0.

0.

CASE Q

2. The operand types are:

.

L-type I R-typeVECTOR VECTOR

If the t-operand is of length m,

and the R operand is of length n,
the result is an m x n matrix.

Examples:

If Vl is a 3-vector with Vl

V2 is a 2-vector with V2

then Vl V2

and V2 Vl

l 0o0 ij

[i il
Io

(3 X 2 matrix)

0 5](2 x 3 matrix)0[

7-10

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

CASE Q

•

•

•

The operand types are:

_type I _type
MATRIX MATRIX

The number of columns in the

L operand must equal the number of

rows in the R operand.

If the i operand is an m x n matrix

and the R operand is an n x p matrix,

the result is an m x p matrix•

Examples:

If M1 is a 2 x 3 matrix with M1 = |i.0 1.0 2.01

!0.5 -0.5 1.0 !

M2 is a 3 x 2 matrix with M2- [i 110!i]

then M1 M2- [0
(2 x 2 matrix)

andM2MI[i 2SSS0S0S0210100S](3 x 3 matrix)

Note that by using partitioning subscripts that

MI*,2 TO 3 M2 is illegal because of dimension mismatch;

= [!!i25 0.5] is still legal

but M2 MI,,2 TO 3 - 5 1

5 1

7-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CASE Q

•

•

•

The operand types are:

_type _type

VECTOR MATRIX

MATRIX VECTOR

If the t operand is an m x n matrix,

the R operand must be an n-vector,
and the result is an m-vector.

If the i operand is an m x n matrix,

the R operand must be an m-vector, and
the result is an n-vector.

Note that the position of the vector operand again determines

its interpretation as either a row or column vector.

Examples :

If M is a 3 x 2 matrix with M-_- [0.500.2 liill0

V is a 3-vector with V -- [_ii!]

then V M -- [_[71 (2-vector)

and M V is illegal because of dimension mismatch;

h°wever' M Vl TO 2 - [!! "5]'2 is legal.

7-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

EXPONENTIATION,INVERSIONAND TRANSPOSE

In HAL/S, a single operator serves for exponentiation, matrix

inversion, and matrix transpose, the operand types serving to

distringuish between them.

If both operands are integer or scalar, then exponentiation

is implied; ...CASE i_

if the left operand is a square matrix, and the right is

an integer-valued literal, a repeated matrix product or repeated

product of inverse is implied; ...CASE /_
kt}

if the left operand is a matrix, and the right operand is

the character 'T', then the transpose is implied. ...CASE @

These operations take the general symbolic form:

i.

Symbolic form: L '_ R

This is the one-line format version.

In multi-line format the operator symbol

is omitted and R is placed on an exponent

line. See Section 2.3.

The rules for each of the cases listed above are now described in

turn.

7-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6t7) 661-1840

CASE Q

2. The operand types are:

.

o

L-type

INTEGER }
SCALAR

R -type

INTEGERSCALAR

If the i operand is integer and

the R operand is a non-negative

integral-valued literal, then the

result is integer, otherwise it is

scalar.

Consistent with Rule 3, if the result

is scalar, then any integer operands

are first converted to single-precision

scalar.

Examples:

If I is an integer with I _ 5

then I ** 2 5 25

and I**-i E 0.2

also 2**0.5 _

(integer result)

(scalar result)

(scalar result)

7-14

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CASE Q

2. The operand types are:

t-type _ Ro-type

MATRIX I INTEGER

3. The t operand is a square matrix.

4. The R operand is an integral-valued

literal. The following table shows

the effect of different ranges of

values of the R operand:

value

< - 2

-I

0

1

> 2

result

repeated product of inverse

inverse

unit matrix

no-operation

repeated product

Examples :

If M is a 2 x 2 matrix with M _ { 0.5 11
l-O.5 Ol

then M 2 - [-0.25 0_ 0:_]

[0 12]

and.0 "° 100]

7-15

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CASE Q

2. The operand types are:

i -type R -type

MATRIX T

3. If the i operand is an m x n matrix,

then the result is an n x m matrix.

4. If R is symbolically T, then transpose
is indicated even if T is a declared

data item.

Examples:

If M is a 2 x 3 matrix with M -= 112100 00 4.03"01

thenMT[!:O0020]0
iVisavectorwithV[ii]23

then V T is illegal because the L operand is not matrix type.

The transpose of a vector is not needed in the HAL/S language.

7-16

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

NOTEON PRECISIONCONVERSION

It is possible that the precisions of the two operands may

differ in any of the operations described. In these cases,

precision conversion usually takes place before the operation

is executed. The rules under which it takes place are as

follows:

.

e

.

No precision conversion is applicable

in unary operations: transposition

is considered a unary operation.

Where one operand only is integer, the

precision of the result is the same as

the precision of the other operand.

Where the operation impll---_s an integer-

to-scalar conversion, the result of

the conversion is generated with the

precision of the other operand.

If Rule 2 does not apply, and the

precisions of the operands differ, the

single precision operand is first con-

verted to double precision. The preci-

sion of the result of the operation is

the same as the precision of the

operands after the possible precision

conversion.

7-17

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7,2 CHARACTEROPERATIONS

There is only one character operation in HAL/S:

of character strings.

the catenation

Symbol

Ii }
CAT

Purpose

catenation

CATENATION

The utility of catenating character strings is obvious in

the generation of output listings. The rules related to

the catenation operation are as follows:

l.

o

Symbolic form: L II R
CAT

The L and R operands are not just

restricted to character type: some

degree of implicit type conversion

is allowed. The following types are

legal.

L-type

INTEGER _

SCALAR
CHARACTER!

R-type

INTEGER

SCALAR
CHARACTER

The rules for converting integer and

scalar types to character type are to

be found in Appendix .

7-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples:

If C, is a character item with C _ ' UNITS'

I is integer with I E 10

then 'TEN' II C E 'TEN UNITS'

I 11 c _ 'io UNITS'

and I II i E '1010'

7-19

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7,3 BOOLEANOPERATIONS

Boolean operations are logical (binary) transformations on Boolean

operands. HAL/S recognizes the following operations:

_bol

i 1OR

NOr

Purpose

logical intersection

logical

logical complement

COMPLEMENT

The complement operation complements the logical value of a

Boolean operand. It takes the following form:

Symbolic form: _ R
NOT

i. The R operand is of Boolean type.

Example:

If B is Boolean with B

then _B _ FALSE

--TRUE

7-20

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CONJUNCTION

The conjunction operation causes the logical values of two

Boolean operands to be OR'ed together.

.

2.

Symbolic form:
, I R

,
OR

The i and R operands are of Boolean type.

The truth table for the resulting Boolean
is as follows:

T=TRUE

F=FALSE

T
R

F

L

T

T

T

F

T

F

Examples:

If B is Boolean with B _ FALSE

then BIB _ FALSE

BITRUE E TRUE

7-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

INTERSECTION

The intersection operation causes the logical values of two

Boolean operands to be AND'ed together.

lo

2.

Symbolic form: i & R
AND

The L and R operands are of Boolean type.

The truth table for the resulting Boolean

is as follows:

T=TRUE i

F=FALSE T F

R T T F

F F F

Examples:

If B is Boolean with B E FALSE

then B&TRUE E FALSE

B&B E FALSE

7-22

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7.4 COMBININGOPERATIONS& PRECEDENCE

It is obviously desirable to be able to combine operations so

as to create expressions of any required complexity• In combining

operations, the following information is necessary:

• The order in which operations are executed (the order

of ',precedence");

• the way in which the precedence order can be overriden.

ARITHMETICAND CHARACTERPRECEDENCE

The precedence of HAL/S operations on arithmetic and character

data types are shown in the following table:

Symbol

(blank)
*

/
+

11,CAT

Precedence

FIRST

1

2

3

4

5

6

6

7

LAST

Purpose

exponentiation, etc.

multiplication

cross product

dot product
division

addition

subtraction, negation

catenation

Two rules clarify and modify this information:

• Sequences of operations of the same precedence are evaluated

left to right, except for ** and /, which are evaluated right

to left.

Sequences of multiplications are sometimes reordered to minimize

the number of elemental products required• Dot and cross

products are involved in this process•

7-23

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

In the following expression, the numbered pointers show

the order of execution of operations:

,_su_T oF STEP'IIN11'is

BOOLEANPRECEDENCE

The precedence rules for Boolean operations are stated separately

because there are no implicit conversions causing interaction

with arithmetic and character operations.

Symbol

_, NOT

, AND, OR

Precedence

FIRST

1

2

3

LAST

Purpose

complement

intersection

conjunction

Sequences of operations of the same precedence are evaluated

left to right.

Examples:

In the following expression, the numbered pointers show the

order of execution of operations:

7-24

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

OVERRIDINGPRECEDENCEORDER

In HAL/S, the order of precedence can be overriden at will by

the use of parentheses, nested to any arbitrary depth.

Examples:

In the following Boolean expression,

BIIB2 _ B31B4_ BS

d46B
parentheses may change the precedence order as shown:

(BIlB2) & ((B31B4) _, BS)

4
In the following arithmetic expression,

2

+s2_s312

parentheses may change the precedence order as shown:

((Sl +

HAL/S allows the operands

in an expression to be

arrayed, causing parallel

evaluation on an element-

by-element basis.

See: Guide/20.1.

7-25

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

7,5 SOMEEXPLICITCONVERSIONS

As evidenced in Section 7, there are few implicit type

conversions in the HAL/S language. However, there is a

comprehensive range of explicit conversions, some of which

are now described.

PRECISION CONVERSION

Any arithmetic expression may have its precision explicitly

changed as follows:

(expression)@ DOUBLE

(expression)@ SINGLE

i. In the first form, if expr_sion is

a single precision arithmetic preci-

sion, it is converted to double pre-

cision. If it is already double

precision, the conversion has no

effect.

0 In the second form, if expr_sion is

a double precision arithmetic expres-

sion it is converted to single preci-

sion. If it is already single preci-

sion, the conversion has no effect.

0 If expr_sion is of scalar type, con-

version to single precision implies

rounding. If it is of integer type,

it entails loss of most-significant

digits. See Appendix A.

Example:

If A and B are single precision, then the result of

(A + B)@ DOUBLE

is double precision, the type remaining unchanged.

7-26

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

VECTORCONVERSION

A vector can be synthesized from a list of scalar or integer

expressions using the construct shown in the following table:

.

.

o

•

So

VECTOR n (_pl 2), up

The subscript number n specifies the

length of the vector to be created, and

lies in the range 1 < n < 64*.

If n is omitted the resulting vector is

assumed to be of length 3.

Each zx_ is a scalar or integer

expression.

The number of expressions in the list

must match the implicit or explicit

result length.

The result of the above conversion is in

single precision.

Examples :

VECTOR(I, 2, 3)

creates a 3-vector with value

* This value may be implementation dependent. See appropriate

User's Manual.

7-27

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

if S is a scalar with S • 0.5 then

VECTOR 4 (S, S 2, S+I, 0)

creates a 4-vector with value

Note that even if the arguments are double precision the result

is in single precision. To specify double precision in a vector

conversion, the following modified form is used:

VECTOR@ DOUBLE, n
(expl 2, _P)

i. The meanings of exp and n are as before.

2. If n is not specified, the preceding comma
is also omitted.

Examples:

VECTOR@ DOUBLE (I' 2, 3)

creates a double precision 3-vector with value

VECTOR@ DOUBLE, 4 (1' 2, 3,4)

creates a double precision 4-vector with value

7-28

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MATRIXCONVERSION

There exists a method of synthesizing a matrix from a list of

integer or scalar expressions analogous to the vector conversion
described:

lo

•

Be

e

So

•

MATRIXm, n (exp i 2), 6Xp r

The subscript numbers m, n specify the
row and column dimensions of the matrix

to be created, and must lie in the range

1 <(m, n)! 64*.

The subscript may be omitted, in which

case the resulting matrix is assumed to

be 3 by 3.

Each up is a scalar or integer

expression.

The number of expressions must match the

total number of elements in the resulting

matrix.

The result of the above conversion is in

single precision.

The matrix is assembled row by row from

the list.

* This value may be implementation dependent.

User's Manual•

See appropriate

7-29

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Example s :

MATRIX(l, 2, 3, 4, 5, 6, 7, 8, 9)

creates a 3 x 3 matrix with value

MATRIX2, 3(1"5' 0, 0, 0, 0.5, 0)

creates a 2 x 3 matrix with value [1.500010 0.5

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required

if the result is to be in double precision:

MATRIX@ DOUBLE, m, n (expl 2• _p)

i. The meanings of m, n and zxp

before.

•

are as

If the dimension subscript is omitted, the

preceding comma is also omitted.

Examples:

MATRIX@ DOUBLE(I, 2, 3, 4, 5, 6, 7, 8, 9)

creates a double precision 3 x 3 matrix with value

MATRIX@DoUBLE, 2, 3 (1"5' 0, 0, 0, 0.5, 0)

creates a double precision 2 x 3 matrix with value Ii.5 0 01
|0 0.5 0 J

7-30

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The explicit conversions described

are those most commonly required for

numerical __malysis. However, HAL/S

contains many other explicit con-

version function forms corresponding

to conversions between most data types.

See: Guide/21.

7-31

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

7,6 BUILT-INFUNCTIONS

HAL/S possesses a comprehensive range of library or

"built-in" functions that can be used as operands in

expressions. Built-in functions have zero, one, or

two arguments, and are written in a form akin to
standard mathematical notation.

Built-in functions are divided into five different classes,

roughly according to purpose:

• arithmetic

• algebraic

• vector-matr ix

• character

• miscellaneous

A full description of all built-in functions is given in

Appendix B. A brief explanation of some of the more

important functions in each class is given below.

ARITHMETICFUNCTIONS

Arithmetic functions perform simple arithmetic operations

on scalar or integer arguments. Some arithmetic functions

are :

Function Comments

ABS (e)

DIV (e, 8)

ROUND (e)

ODD (_)

SIGN (e)

returns I_I (the absolute value of

e). _ may be integer or scalar.

returns the result of integer divi-

sion of u by 8. e and 8 may be

scalar or integer: scalar values

are rounded to integer before use.

rounds a scalar u to an integer.

returns a Boolean result, which is

TRUE if _ is odd, and FALSE if

is even.

returns +i if u > 0 and -i if _ < 0.

7-32

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

ALGEBRAICFUNCTIONS

Algebraic functions perform trigonometric and other
transformations on scalar arguments. Some common
algebraic functions are:

Function Comments

cos (_)

EXP (u)

LOG (a)

SIN(u)

SQRT (a)

TAN(e)

returns cos

returns e

returns loge_

returns sin

returns u_-

returns tan

VECTOR-MATRIXFUNCTIONS

Vector-matrix functions perform operations on vectors or
matrices. Common vector-matrix functions are:

Function

ABVAL (a)

INVERSE (_)

UNIT (_)

Comments

returns length of
vector u

returns inverse of

square matrix

returns unit vector

in same direction
as vector e

7-33

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CHARACTERFUNCTIONS

Character functions perform operations on character data.

Some common character functions are:

Function Comments

LENGTH (e)

TRIM (e)

returns current length

of character string

strips leading and

trailing blanks from

string

MISCELLANEOUSFUNCTIONS

Some of the more important miscellaneous functions are:

Function

DATE

MAX(u)

MIN (_)

RANDOMG

Comments

returns date at time of

execution

returns the maximum

value in the integer

or scalar array

returns the minimum

value in the integer

or scalar array

returns random number

fromGaussian distri-

bution with mean zero,

variance i.

7-34

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

I
I SINE = SIN (X/2) + SIN (Y/2) ;

X = ABVAL (VI*V2) ;
I

IF ODD(X) THEN RETURN;
I

7-35

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

7-36

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

8, ASSIGNMENTS

Section 7 described, in detail, the creation of HAL/S

expressions used in numerous places in the language.
The assignment statement is one such instance in which

the value of an expression is assigned to a data item.

For convenience, an assignment is classified according

to the type of the receiving data item; that is, the

data item being assigned into. Because HAL/S allows

implicit type conversion, this type is not necessarily

the same as the expression whose value is used in the

operation.

• Arithmetic assignments are assignments to matrix,

vector, integer or scalar data items.

• Character assignments are assignments to character
data items.

Boolean assignments are assignments to Boolean
data items.

8,1 GENERALFORMOF ASSIGNMENT

The assignment statement is an instance of a HAL/S executable
statement. It has a general form applicable to all types

of assignment:

i.

.

Symbolic Form: L = R;

L is the receiving data item. It

may be subscripted or unsubscripted.

Usually, R is an expression whose
resultant value is to be used in the

assignment. It may, of course, consist

merely of a single operand.

8-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Additional assignment rules are applicable which differ

according to assignment type.

8,2 ARITHMETICASSIGNMENTS

Arithmetic assignments are those in which the receiving

data type is matrix, vector, integer or scalar.

MATRIX

The receiving data item is a matrix.

1. The operand types are:

.

.

L-type

MATRIX

R-type

MATRIX
INTEGER (rule 3)

The number of rows and columns

of the R-expression must be the

same as those of the receiving
data item.

The on_q_ condition under which
the R-type is integer is if it

the literal value zero. The

assignment te_-e-ncreates a null

matrix.

is

Examples :

If M1 is a 2x3 matrix with M1 - [5

M2 is a 2x2 matrix,

M3 is a 2x3 matrix;

10 o0]-0.5 i.

8-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

then

i

IM3 = -MI;

results in M3 E

but

I

IM2 -- MI;
I

[5 0.5 -I.

is illegal (column mismatch)

I
IM2 = M1
I ., 2 AT 2;

results in M2

I

IM3 = 0;
I

[0_0 _01:5 1.Ol

results in M3 = 0010 0

but

I

IM3 = i;

I
is illegal

VECTOR

The receiving data item is a vector.

.

.

.

The operand types are:

L-type I R-type

v c oRI INTEGER (rule 3)

The length of the R-expression

must be the same as that of the

receiving data item.

The on_ condition under which
the R-type is integer is if

it is the literal value zero.

The assignment then creates a

null vector.

8-3

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Examples :

If Vl is a 3-vector with Vl - li'00I.

M2 is a 3x3 matrix,

V2 is a 3-vector;

then

I
IV2 = -Vl;

I

results in V2 _ I_![_

I

IM2 _ Vl; is illegal (type mismatch),
I

but

I

IM2 1 = Vl; is legal since subscripting reduces
I '* the L-type to 3-vector.

and results in M2 Eli 2_??

(? indicates values unchanged by assignment).

Note

I
IV2 = O;

l

creates a null vector.

8-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INTEGER/SCALAR

Integer and scalar assignments can be treated together

because their rules are nearly identical.

i. The operand types are:

0

o

LtyperlINTEGER }SCALAR

R-type

INTEGER

SCALAR

If the L- and R-types

do not match, type

conversion of the result

of the R-expression takes

place before assignment.

Scalar-to-integer conversion

implies roundin@ of the value

of the R-expression.

Examples:

If I is an integer,

S is a scalar, and

M a 2x2 matrix, then

J I = 5; results in I - 5

I

I I = 7.7; results in I - 8

l
i S = 7.7; results in S - 7.7

Given the last values above for S, I

i

JM 2 = I - S;,2
I

results in M - [? 0_]3

I

J M2, ,
l

(? indicates values unchanged by assignment)

= I; is illegal (type mismatch)

8-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

NOTEON PRECISIONCONVERSION

In an arithmetic assignment, the precisions of the receiving

data item and of the R-expression may differ. In these

cases, precision conversion of the latter takes place before

assignment, under the following rules:

Io

•

The R-expression is converted to the

precision of the receiving data item

as necessary before assignment.

If type conversion from integer to

single precision scalar is implied,

its result is generated with the

same precision as the receiving
data item.

8-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

8.3 CHARACTERASSIGNMENTS

The receiving data item is character type.

i. The operand types are:

o

L-type IR-type

It CHA-RACTER
CHARACTER INTEGER

SCALAR

R-expressions of integer or

scalar type are converted

before assignment to character

type. Conversion rules are to

be found in Appendix .

Examples:

If C is a character string with C _ 'ABCDE' and

C2 is a character,

then

I

iC2 = C3;
results in C2 E 'C'

results in C2 E '1573'
i

I C2 = 1573;

i

These apparently straightforward rules can become more complex

in some situations.

Generally, when the receiving data item is unsubscripted, its

working length becomes the same as the length of the R-

expression. However, if this would cause the declared

maximum length of the receiving data item to be exceeded,

then truncation of the excess from the right takes place.

|E

8-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

If C1 is character of maximum length 10

C2 is character of maximum length i,

then

I
ICI = 'ABCDE';
i

results in C1 E 'ABCDE' of working length 5

but

!

iC2 = 'ABCDE';
I

results in C2 E 'A' of working length 1

If the receiving data item is subscripted, then this causes

an additional complication. The rules applicable in such

a case are as follows:

i.

.

.

,

.

Let

STRING

denote a receiving data item of

character type:

N is declared maximum length

n is working length before assignment

The range of the subscript expression

is presumed to be in the range 1 - N;

otherwise an error results.

The length of the R-expression is adjusted

to the length implied by e, either by

truncation of the excess from the right,

or by padding on the right with blanks.

If the range of _ lies inside the range

l-n, then simple substitution of the char-

acter positions implied takes place.

If the range of u lies partly beyond the

range 1 - n, then the working length of

STRING is increased appropriately.

If the range of _ lies totally beyond the

range 1 - n, the working length of STRING

is increased appropriately, and the gap
between the n th character and the first

position implied by e (if any) is filled
with blanks.

8-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples:

Let C1 be character of declared maximum length 10

with value C1 _ 'ABCD'

Then by Rules 2 and 3:

l

= ,QQ,I C12 TO 3
l

results in Cl E 'AQQD'

l
C12 '123.4'1 TO 3 = ;

i

results in C1 E 'AI2D'

I
gX'

i Cl 2 TO 3
i

results in C1 E 'AX D'

By Rules 2 and 4:

l

J C14 = ,QQ,;
j TO 5

results in C1 E 'ABCQQ'

(working length increased by i)
l

i Cl = 'X'
I 4 TO 5 ;

results in C1 5 'ABCX '

(working length increased by i)

By Rules 2 and 5:
l

i Cl 5 = ,QQ,;i TO 6

results in Cl E 'ABCDQQ'

I (working length increased by 2)

IC171 TO 9 = 'FGH'._.

results in C1 E 'ABCD FGH'

I

I C16 = 'FGH';
I

results in C1 E 'ABCD F'

8-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

8,4 BOOLEANASSIGNMENTS

The receiving data item is of a Boolean type.

lu

o

The operand types are:

i-type I R-type

BOOLEAN I BOOLEAN

The logical value of the

R-expression is transferred

to the receiving data item.

Example:

If B is Boolean, then

!

I B = FALSE;

!

results in B E FALSE

8-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

8.5 MULTIPLEASSIGNMENTS

Several data items may be assigned to the same R-expression

in the same statement. The general form of such a multiple
assignment is as follows:

le

.

Be

Symbolic form:

LI L 2 Ln= R;
t P °" "

The value of the R-expression
is assigned to all iI ... tn
in turn.

Any L-type must be compatible with

the R-type according to the rules

stated in Sections 8.2 through 8.4.

No particular order of assignment is

guaranteed.

Examples:

If M1 is a 2x2 matrix,
Vl is a 3-vector

i

tMl, Vl = 0;
I

results in M1 _ [_ _], Vl E [!]

If C is a character,

I is an integer,
i

IC, I = 127.2;
I

results in C _' 1.2720000E+02', I _ 127 IE

8-11

INTERMETRICS INCORPORATED "701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

With the above data items,

I

I Ml, C = 5;
i

is illegal because of data type mismatch between M1

and the R-expression.

The following example illustrates the importance of Rule 3:

If further I - 2, then

i

V1 I, I = I + i;
i

has an ambiguous result, depending on the order

of assignment.

If I is assigned before Vl I'

then Vl I E I_l , otherwise V11

(? indicates values unchanged by assignments)

In HAL/S, the receiving data item

or items may be arrayed. This can

produce varying effects depending on

whether or not the R-expression also

is arrayed (i.e. has arrayed operands).

See: Guide/20.3.

8-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1 CONDITIONALSTATEMENTSAND BRANCHES

Section 9 is primarily concerned with the HAL/S conditional

statement, by which other executable statements may be

conditionally executed (or by which their execution may be

conditionally avoided). Together with statement groups,

which will be described in Section 10, they form a crucially

important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using

GO TO statements to cause branches in execution. Their

total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-

ment, and statement labels, which are their destinations.

Statement labels are, in addition, needed for other constructs

to be described in Section i0.

9,1 THE CONDITIONALSTATEMENT

In HAL/S, the simple version of the conditional statement is

an "IF clause" containing an expression evaluable as either

TRUE or FALSE, followed by a "true part" which is executed

only if the IF clause is TRUE. The simple version may be

augmented by a "false part" which is executed only if the
IF clause is FALSE.

9-1

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

E

SIMPLEIF STATEMENT

The form of the simple version is:

Q

1

3.

o

IF exp THEN St_utemzn,t ;

eXp is an expression which is evalu-
able as either TRUE or FALSE. It

may be either a BOOLEAN expression

or a relational expression (these

are described in Section 9.2).

St_u_9.mei_t constitutes the true part

of the conditional statement. It may

be any executable statement, either

simple o_rrcompound.

_Iteme_t may possess a label but

cannot be branched to from outside

the IF statement.

If exp is FALSE, execution proceeds

to the next statement. If TRUE,

_a_t is executed first.

' 9-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

I
I IF BIC THEN X = 0;

I y= i;

X is set to 0 if either B or C or both is true:

the flow diagram for these events is:

evaluate

Yes

Set

X= 0

!
i IF BIC THEN DO;
I X =X- i;

i Y=Y+ i;

iEND;

The true part is a compound statement containing

two assignments.
I

i IF B THEN

i IF C THEN
D= 0 ;

This shows that one can nest IF statements.

9-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

El
AUGMENTEDIFSTATEMENT

When augmented with a false part, the IF statement takes
the form:

I.

o

0

.

e

! IF exp THEN st_utemeyut ;I
! ELSE else Statement ;
J

The form of the IF clause and true

part are the same as in the simple

conditional statement.

e/se St_utement constitutes the false

part of the conditional statement.

It may be any executable statement

either simple or compound.

e/se statement may possess a label
but cannot be branched to from out-

side the IF statement.

If exp is FALSE, execution proceeds
to the next statement via e/s¢ statement.

If TRUE, it proceeds to the next

statement via statement.

An ELSE clause may only be used if

it is immediately preceded by an IF

THEN statement. (This eliminates the

"DANGLING ELSE" problem found in some

other higher level lanquages.)

9-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples :

I
I IF BIC THEN X = 0;
I ELSE X = i;

I
X is set to 0 if B or C or both is true,

otherwise X is set to I. The flow diagram

for these events is:

No

levauaeIC
Yes

I r w I

I IX= 1

I
T

' L

Set IX=0

I

i If BIC THEN DO;
X= i;

I Y= 2;

i END;

ELSE DO;
X= 2;

I Y= i;

i END ;

Here, both true and false parts are compound

statements each containing two assignments each.

9-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

I
i IF B THEN X = 0;
ELSE IF C THEN X = i;

Iy = 2;
I

This is legal: the false part of a conditional

statement may itself be another conditional
statement: the flow diagram for these events

is:

No Yes

f
1

INo

Set

X = 1

Set]Y= 2

9-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I IF B THEN

I IF C THEN

I x=0 ;
I ELSE
1
I X= 1 ;
, ELSE X = 2 ;

Illegal because the last ELSE clause is not immediately

preceded by an "IF exp THEN statement" statement. If
the intent is to make the last ELSE effective on the

first "IF exp THEN" clause, one can use the DO-END

grouping in the following manner:

IF B THEN

DO ;

IF C THEN

X= 0 ;
ELSE

X= 1 ;

END ;

ELSE X = 2 ;

This is legal because the DO-END group collects any

number of statements within its scope and makes them

look like a single statement. The flow diagram for
these events

iSe ix = 2

NO Yes

Iset0

r

9-6 .i

E

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

9,2 RELATIONALEXPRESSIONS

As was stated in Section 9.1, there are two valid forms

of expression in an IF clause, BOOLEAN, and relational.

BOOLEAN expressions were described in Section 7; relational

expressions only appear in a limited number of HAL/S

constructs, among them conditional statements, and are now

described.

The simplest form of a relational expression is merely a

comparison between two like quantities. The result is

either TRUE or FALSE. More complex forms of relational

expressions result from combining comparisons with the

BOOLEAN operators &, I, and 7.

COMPARATIVEOPERATIONS

HAL/S recognizes the following comparative operators:

Symbol Purpose Class

>

<

<=

NOT >

>

> =

NOT <

<

NOT =

greater than

less than

less than or equals

not greater than

greater than or equals

not less than

equals

not equals

II

9--7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The operands of comparative operations may, in general,

be expressions of any of the types described in Section 7.

Depending on the type of operand, the operators may be

restricted to Class II only, or may be either Class I or

Class II.

• CLASS II ONLY

io

Symbolic form: L NOT =R

Legal combinations of data types

are indicated by the following

table:

L-type

VECTOR

MATRIX

BOOLEAN

R-type

VECTOR

MATRIX

BOOLEAN

•

•

o

Comparison of vector and matrix

operands implies element-by-element

comparison.

The operands in a vector comparison

must be the same length•

The operands in a matrix comparison

must have the same row and column

dlmenslons.

9-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples

If V, Vl are 3-vectors wi_h

then V = Vl is FALSE,

v
If further V2 is a 2-vector with V2 £ I_ 1

then V1 = V2 is illegal because of length mismatch,

but VI I TO 2 = V2 is TRUE.

9-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

6 CLASS I AND CLASS II

Symbolic Form L

>

<

>=

<=

NOT >
9>

NOT <

_<

NOT =

R

i. Legal combinations of data types are indi-

cated by the following table:

L-type 1 R-type
INTEGER } I INTEGERSCALAR SCALAR

CHARACTER CHARACTER

2. In a mixed integer-scalar operation, the

integer operand is converted to scalar be-

fore the comparison takes place.

3. For character string comparisons, the standard

dictionary collating sequence is used. For

strings of equal length, a string is greater

than another string if at the first miscompare

(going left to right) the character in the

first string is greater than the character in

the second string. If the lengths are unequal,

the shorter one is padded with blanks on the

right, then the comparison sequence used for

strings of equal length is used.

Examples:

If I is an integer with I { 5

then I = 5 is TRUE

I < 4 is FALSE

I >= 5 is TRUE

If C is a character data item with C _ 'ABC'

then C = 'ABC' is TRUE

C = 'BCD' is FALSE

C > 'AB' is TRUE

C < 'ABCD' is TRUE

C > 'ABB' is TRUE

* The collating sequence is implementation dependent.

appropriate User's Manual.

See

9-10

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

NOTEON PRECISION CONVERSION

Precision conversion may be required where both operands

of the comparison are arithmetic.

Where the types of the operands are the same, but the

precisions differ, the single precision operand is converted
to double precision before the comparison is made.

In a mixed integer/scalar comparison the result of the

integer-to-scalar conversion is generated with the same

precision as the scalar operand.

9-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

COMBININGCOMPARATIVEOPERATIONS

Comparative operations may be combined as if they were

BOOLEAN operands, using the rules for Boolean operations

described in Section 7. It is important to note however,

that comparative operations are not BOOLEAN operands in

the sense that they can be mixed--Q-_th actual BOOLEAN data

items.

• Boolean expressions may contain n ocomparative operations.

• Relational expressions may contain no Boolean operands.

Examples :

If VI, V2 are 3-vectors with

and C is character with C -= 'ABC'

then

Vl = V21C 1 = 'A' is TRUE

Vl = V2 & C 1 = 'A' is FALSE

If B is Boolean then

BIVI = V2 is illegal

B = ONI'VI = V2 is legal

but

9-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

PRECEDENCE

The following table shows the precedence of operations

involved in a relational expression:

Symbol Precedence Purpose

>

<

<=

NOT >, _>

>=

NOT <, _<

NOT =, _=

_, NOT

&, AND

I, OR

* Any operand of

I

)

FIRST

I

2

I operations involvingoperands of comparisons

comparative

operations

3* I

4

)

this operator must always be parenthesized.

logical operations on

comparisons

Example:

In the following expression, the numbered pointers show

the order of execution of operations:

9-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Section 9.2 ends with some more examples designed to

clarify the foregoing.

Example s :

Let V be a 3-vector with V --[!]

I
I IF V = 1 & V = 2 THEN V = 0;

S 1 2 3
I
I IF V > 0 I V < 0 THEN V = 0;

is 3 2

The first statement will cause V 3 to be set to

zero since both comparisons are TRUE. Then

In the second statement, neither comparison in the

relational expression is true. Hence, the "true

part" is not executed and finally

I!] as before.

V E

El

Relational expressions may be

arrayed, additional rules being

required to determine if the re-

sult is TRUE or FALSE.

See: Gulde/20.5.

9-14

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

9.3 LABELSAND BRANCHES

In HAL/S, there are two entities involved in the

branching operation: a GO TO statement, which, when
executed causes the branch; and a "statement label"

which is the destination of such a branch• HAL/S

also uses statement labels for other purposes, which
will become clear in Section i0.

LABELS

Labels are names chosen by the programmer and attached to

statements. More than one label may be attached to a

statement. The way of attaching a single label to a
statement is as follows:

•

•

I
I label : statement ;
I

statement is any executable

statement or statement group
(see Section i0).

label is a user-defined

identifier name (see Section

2.2).

9-15

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples :

I
IONE: X = X + i;

ITWO: Y = 0;
I
IIF X = 0 THEN ONE: Y = 0;

IIF X = 0 THEN X = i;

IIELSE TWO: X = 3;

ITHREE: IF X = 0 THEN Y = I;
I

If more than one label is required, then they follow each

other in sequence.

Example:

I

IONE:
I

TWO: THREE: X = X + i;

9-16

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

GO TO STATEMENT

The GO TO statement specifies the label to which
execution branches: it takes the form:

i •

I GO TO Z_be_ ;
!

i

ZabzZ is a label attached to

some statement to which execution

is to branch.

Examples:

i
I GO TO ONE;
i

The GO TO statement itself may be labelled:

i
I TWO: GO TO THREE;
i

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO

statements and where they may cause execution to
branch to. Section 1.3 described this on the abstract

level, and Section l0 further discusses it in con_ection

with statement groups.

9-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ELIMINATINGGO TO STATEMENTS

El

The Guide has stressed throughout that, according to structured

programming principles, GO TO statements are inherently un-

desirable because they tend to disguise the program's flow

of execution.

It will be found that HAL/S contains a sufficient number of

other constructs to allow GO TO statements to be substantially

eliminated from a program. Following is an example showing

the elimination of GO TO statements•

Examples :

l IF X > 1•5 THEN GO TO ALPHA;

IF X < 1.5 THEN GO TO BETA;

I Y= Y + i;
GO TO GAMMA;

I ALPHA: X = X - 0.05;

I GO TO GAMMA;
BETA: X = X + 0.05;

I GAMMA- .

I •
I

This example is programmed in HAL/S in the simplest way

(possibly having been translated from Fortran or an assembly

language). The profusion of GO TO statements disguises the

simple flow of execution, which is interpreted by the following

flow diagram:

< >

Set Y

to

Y + 1

increment

X by

0.05

decrement

X by

0.05

9-18

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The same algorithm is more clearly programmed
as follows:

! IF X > 1.5 THEN

! X=X - 0.05;

! ELSE

I IF X < 1.5 THEN

I X = X + 0.05;

I ELSE

Y = Y + i;

9-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MAssACHUSETTS 02138 • (617) 661-1840

10, STATEMENTGROUPS

Section 1.3 of the Guide introduced, on an abstract level,

the idea of "statement groups", which could be treated as

if they were simple executable statements, and could be

nested one inside the other. The power of such a facility

can be seen, for example, when it is used in conjunction

with the conditional statement: (this is demonstrated later

in Section i0.i).

There is, in fact, a second, equally important reason for

grouping statements in HAL/S: the execution of such groups

can be controlled in a variety of ways. If no explicit

specification is made, the sequence of statements is executed

once only. By explicit specification:

• the sequence may be repetitively executed until some

condition is satisfied;

a single executable statement (or nest statement group)

of the group, selectable at execution time, may be

executed.

Section 10 explains in detail how statements are grouped,

and how execution control of the groups is specified.

i0,i DELIMITINGSTATEMENTGROUPS

In HAL/S, groups of statements are said to be "well-bracketed":

they are delimited explicitly by opening and closing statements
which are themselves considered executable.

10-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

THE DO STATEMENT

Every statement group is opened with a "DO" statement which

is also used to specify control of execution within the group.

It takes the generic form:

.

.

Be

| DO control ;
!
!

control is a construct to be

described. It specifies the manner

in which the sequence of statements
is to be executed.

control is optional. If it is

absent, the sequence of statements

within the group is executed in order

once only.

The DO statement is executable in

that it may be labelled according

to the Rules of Section 9.

The particular instances of DO statements will be explained

in Section 10.2.

10-2

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

THE END STATEMENT

Every statement group is closed with an END statement:

le

.

I
! END lab_ ;
I

The END statement is executable

in that it may be labelled according

to the Rules of Section 9.

label is optional: if present,

the opening DO statement of the group
must be labelled with labe/ .

The label specification in an END statement is never

functionally necessary in HAL/S. However, it should be

regarded as good programming practice because it

facilitates cross-checking by the compiler.

Examples:

Two instances of statement groups are shown below.

Even though details of execution control have not

yet been explained, the form of the construct should

be clear.

z

I DO WHILE I > 0;

; I = I - i;

: A = 0;
J

:s T
I

; END;

opening DO statement

I roup of statements

1 closing END statement

i FIX: DO FOR I = 1,25,16,2;
, A = -A ;
I
.S I I

' END FIX;

one statement in group

1 label specification in
END matches label of DO

10-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The following examples show the importance of being able

to group statements together for use in conjunction with a

conditional statement.
|

IFs = 0 THENI = 2;
C = '_SETV_UE Or I TO 'IIf;

!
i

i

!

It is required to conditionally
execute both assignments: one

solution--_-

I
I

I

I

I

I

I
I NOSET :
|

! •

i

!

IF S 4= 0 THEN GO TO NOSET;

I = 2;

C = 'RESET VALUE OF I TO ' III;

This solution is error prone and

not in accordance with structured

programming concepts: a better
solution is -

IF S = 0 THEN DO;

I = 2;

c = 'RESETVALUEOr _ TO 'II_;
END ;

The whole of the group enclosed

by DO ... END is subject to
conditional execution•

10-4

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

10,2 REPETITIVE EXECUTIONOF STATEMENTGROUPS

The sequence of statements in a group can be executed

repetitively until some condition is satisfied. In

this section, two basic forms of DO statement causing

repetitive execution are described:

The DO WHILE statement, in which execution is

repeated while a relational or boolean expression

remains true in value;

The DO FOR statement, in which the sequence is

executed once for each of a set of assigned values
of a "control variable".

THE DO WHILE STATEMENT

The form of the DO WHILE statement is:

l.

•

.

!

, DO WHILE 6on_on ;

!

con_on is any relational or

BOOLEAN expression. It is

evaluated prior to each cycle

of execution of the statement

sequence in the group.

The next cycle of execution of

the group proceeds if the value
of 6on_on is TRUE.

If the value of conlition is FALSE,

the stopping condition is satis-

fied. Execution proceeds to the

statement following the END state-

ment of the group.

10-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Exam _les:

iI = 9;

: DO WHILE I > 0;

I = I - 2;

: END;

Here the group is executed 5 times, after which

the value of I is -i. In flow diagram form,

the sequence of events is:

I Set
I ----I --

½

I SetI = 9

Yes

_No

I

i

i

It is possible for a group never to be executed:

i

DO WHILE FALSE;
I

I = I - 2;I

' END;
i
I

10-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

It is also possible for a group to be executed

forever:

I

i I = 0;

' nn WHILE TRUE;

, I = I - 2;

: END;

: .
I

Normally in this case, the programmer would insert

statements in the group removing this possibility:

I

' I = 9;
I

' DO WHILE TRUE;
I

l I = I - 2;

, IF I < 0 THEN GO TO ALL DONE;

' END ;
I
0

, :
I

If the keyword UNTIL is substituted for the keyword WHILE,

then the group is always executed at least, once. After the

first cycle, the relational or Boolean expression is

evaluated at the beginning of each cycle as in the DO WHILE,

except that the logic of the test is inverted: cycles of
execution continue until the result of the expression be-

comes TRUE.

Example:

I = 0;

DO UNTIL I <= 0;

I = I - i;

END;

The group is executed once, and the final value of

I is -i.

10-7

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

THE DO FORSTATEMENT

The most widely used form of the DO FOR statement is:

:DO FOR var
!

!

= in/t/a/ TO f/na/ BY /ncrement ;

io vat is an unarrayed INTEGER or SCALAR

data item (it may be subscripted if

required). It is called the "control

variable" of the DO FOR statement•

• initial, final and increment are integer

or scalar expressions:

• initial is the initial value

assigned to v_ .

in_%emem_ is the amount by which

v#._. is incremented on each

cycle of execution of the sequence

of statements in the group•

_na/ is the value against which

var is tested at the start of

every cycle to determine if the

stopping condition is satsified.

All three expressions are evaluated

once prior to the first cycle of
execution.

•

•

The stopping condition is met when
the value of va_ lies outside the

range bounded by _ and final.

/nerement may be either positive or

negative. The phrase

BY in_ement

is optional. If omitted, the implied
increment is +I.

10-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Examples:

i

!

i

I
I

s

,S
I
I

!

DO FOR I = 1 TO 10;

X = I;

I

END;

Here the group is executed i0 times. I is

initially i, and increments each time until

10 is reached. At the end of execution of

the group, the value of I is ii. In flow

diagram form, the sequence of events is:

increment

I by

1

I

iset1XI = I

Yes

10-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

',I = 7;

: DO FOR I = I + 5 TO I - 3 BY -2;

', X = X + I;

',END ;

This example demonstrates some of the subtleties

of the DO FOR statement. The initial and final

values are precomputed as 12 and 4 respectively.
Then I is reused as the control variable: the

group is executed 5 times, and after the last

cycle of execution, I retains the value 2.

Care must be taken if the

control variable is integer

and the range expressions are

scalar: rounding occurs

during assignment of values

in such cases. See: Spec./7.6.5.

This DO FOR statement may

possess a WHILE or UNTIL

clause which furnishes a

supplementary stopping con-

dition.

See : Spec./7.6.5.

10-10

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

The DO FOR statement has a second form which is used if

the values of the control variable do not form a regular

progression:

' , exp nI DO FOR var = exp exp 2, ... ;
i

i. vat is the control variable as before.

. Each exp is an integer or scalar

expression. Values of the exp's are

assigned to vat in turn prior to the

execution of each cycle, on a left-to-

right basis.

. Each exp is evaluated immediately prior

to the cycle of execution in which it
will be used.

Examples :
I

!

DO FOR I = 17,5,12,4;

: X = I;

:S I

'i END;

Here, I takes the successive values 17, 5, 12, and 4.

After the end of the last cycle, the value of I remains

at 4.

I = 7;

DO FOR I = I + 5, I + 3, I + i, I - i, I - 3;

X = X + I;

END;

Superficially, this example looks like a different

way of expressing the second example for the first

form of DO FOR statement:

I = 7;

DO FOR I = I + 5 TO I - 3 BY -2;

X = X + I;

END;

I0-ii

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

However, the successive values of I in the new

form (by Rule 3) are:

12, 15, 16, 15, 12

as opposed to

12, I0, 8, 6, 4

in the old form.

Rounding also occurs if the

control variable is integer

and any of the control expres-

sions are scalar. See: Spec./7.6.4.

As before, the DO FOR statement

may possess a WHILE or UNTIL

clause which furnishes a

supplementary stopping condi-

tion.

See: Spec./7.6.4.

10-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

10,3 SELECTIVEEXECUTIONOF STATEMENTGROUPS

One statement of a group may be selected for execution

by means of the DO CASE statement. The form of the
DO CASE statement is:

i•

•

•

DO CASE exp ;

exp is an integer or scalar

expression.

If its value is k (after rounding

if necessary), then the k th state-

ment of the group is selected for
execution•

A run time error results if k s 0

or k is greater than the number of

statements in the group•

| E

The flexibility of a DO CASE statement lies in that the

selected statement may be a compound statement (i.e. it

may itself be a statement group).

Example:

I = 3;

DO CASE I;

X= 4;

X = 3;

DO;

X= 7;

Y= 3;

END;

X= l;

X= 0;

END;

case 1

case 2

case 3

case 4

case 5

10-13

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661.1840

Execution results in the third statement being

scheduled for execution, and the following

values being set:

X - 7, Y -- 3

An ELSE clause may be added
to the DO CASE statement which

is executed if the value of the

case variable is outside the

legal range for the statement

group.
See: Spec./7.6.2.

10-14

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

10,4 BRANCHINGIN STATEMENTGROUPS

Execution may branch out of any statement group via

a GO TO statement. In those cases where the group is

being respectively executed, execution obviously ceases

before the stopping criterion is satisfied. Because GO TO

statements are viewed unfavorably from the standpoint of

structured programming, HAL/S possesses two statements

expressly for executing controlled branches in statement

groups.

• The EXIT statement is, in effect, a controlled branch

out of a statement group.

The REPEAT statement only applies to statement groups

executed repetitively, and is a controlled branch back

to the be_innin_ of the group.

THEEXIT STATEMENT

The simplest form of the EXIT statement is:

o

.

EXIT;

I

Its execution causes an immediate

branch out of the innermost state-

ment group in which it is enclosed.

Execution is directed to the first

statement following the END of the

group branched out of.

10-15

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples :

!
!

, DO:

' X = 1;
I

, Y = 2;

Arrow shows branch in execution if Z - 3

i DO WHILE X > 0;

i, X = X - i;

IF X > 2 THEN DO;
I

IF Y = 3 THEN EXIT;
I

! Y = Y + i;

i END ;
I
END ;

',

Arrow shows branch in execution if Y ---3: execution

branches to the end, but not out of DO WHILE group.

There exists a second form of the EXIT statement to allow branches

out of other than the innermost statement group:

10-16

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

.

.

w
i

I EXIT l_6f ;
!
i

Its execution causes a branch out

of the enclosing statement group

whose DO statement possesses the

label £mb_ .

Execution is directed to the first

statement after the END of the group

branched out of.

Example:

_ONE:
I

I

I

!

lS
!
!
I

I
!

I

!
I

DO WHILE X > 0;

X = X- l;

DO FOR I = 1 TO 10;

A =A ÷ X;

I I

IF X = I THEN EXIT ONE;
IF X = 0 THEN EXIT:

END;

END;

X = 0;,

The first EXIT statement causes a branch out of the

outer group rather than the inner, by virtue of its

label.

10-17

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

THE REPEATSTATEMENT

The simplest form of the REPEAT statement is:

•

•

•

J

' REPEAT;

It must be enclosed in a DO FOR

or DO WHILE group.

Its execution causes an immediate

branch to the beginning of the

innermost enclosing DO FOR or

DO WHILE group.

The next cycle of execution of

the group then starts (unless

of course the stopping condition

is satisified).

Examples:

}

i D0 WHILE X > 0;
I
, X = X - i;

' IF X = 4 THEN
I

' Y = Y + X;
i

IF Y = 1 THEN REPEAT;
I

I
i END;
IEND;

If Y _ 1 then a branch back to the beginning of the

DO WHILE is made. Note that although the DO WHILE

is not the innermost group, it is the innermost

repetitive group•

10-18

INTERMETRICSINCORPORATED-701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

, X = 4;
!

, DO WHILE X > 1

' X= X- i;
!

i IF X = 1 THEN REPEAT;

' Y = X;
Is x
J END ;
I

When X _ 2 the REPEAT branch is executed:

a new cycle of execution does not begin

however because the initial test shows that

the stopping condition is satisfied.

As with the EXIT statement, there exists a second form of

the REPEAT statement allowing branches back to the beginning

of other than the innermost DO WHILE or DO FOR group:

i.

•

i

: REPEAT lab6Z ;

Its execution causes an immediate

branch to the beginning of the

enclosing DO FOR or DO WHILE

group whose DO statement possesses
the label lab£Z .

The next cycle of execution of

the group then starts (unless the

stopping condition is satisfied).

10-19

INTERMETRICSINCORPORATED-701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661 1840

Example:

t

t

[

IS

I

Is

IS

I

I

I

ONE: DO FOR I = 1 TO 10;I

J = I;

DO WHILE J > 0;_

J = J - i;

X = X + J;

J

IF X

J

IF X

J

END;

END;

Z = 0;

J

= 25 THEN REPEAT;

= 0 THEN REPEAT ONE;

The second REPEAT statement restarts the outer DO FOR

group rather than the inner DO WHILE by virtue of its label.

10-20

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661 1840

11, PROCEDURESAND FUNCTIONS

Section 1.2 of the Guide introduced the block structure

of HAL/S programs on the abstract level. To summarize,

any program can contain nested procedure and function

blocks, which are two levels of "subroutines"

characterized by the sequence:

invocation ÷ execution ÷ r_turn to call_

The invocation of procedures and functions is governed

by well-defined name scoping rules.

This section explains how, in practice, procedure and

function blocks are defined in HAL/S, and describes

how they are invoked and returned from.

11,1 INTRODUCTION

A procedure is a subroutine block invoked by a CALL

statement. It may have two kinds of parameters:

• INPUT PARAMETERS - by which values may be

passed into a procedure only.

• ASSIGN PARAMETERS - by which values may be

passed into and out of a procedure.

A function is a subroutine block invoked by the

appearance of its name in an expression. It returns

a value and therefore has a defined HAL/S data type.

It may possess input parameters only.

ii-i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

RELATIVEPOSITIONOF BLOCKDEFINITIONS

Section 1.2 described the scoping rules which determine

the regions of a program where any given procedure or

function block may be invoked.

An important consequence of these rules is that a

procedure invocation may either follow _°r precede

its block definition. However, for other reasons,

the invocation of a function block should normally

always follow its block definition.

A number of rules restrict

the kind of function which

may be invoked preceding

its block definition.

See: Spec./4.6 & 6.4.

11.2 BLOCKDEFINITIONS

Procedure and function block definitions have forms very

similar to the form of a program block, which was described

in Section 3. The first statement is one defining the

name and type of block, and listing its parameters. The

last statement is a statement closing the block.

I

ii-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

PROCEDUREOPENING

The statement opening a procedure block takes the form:

zoJ_: PROCEDU_ (_i,_2,...) ASSIGN (_,2,. ..);

1.

o

Zabef is any legal identifier

name, and constitutes the name

of the procedure.

i1 i2, ,... are legal identifier

names defining input para-

meters. If the entire paren-

thesized list is omitted, then

the procedure has no input

parameters.

. a I, a2... are legal identifier

names defining assign parameters.

If the entire parenthesized list

and the keyword ASSIGN are omitted,

then the procedure has no assign

parameters.

11-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

FUNCTIONOPENING

The statement opening a function block takes the

form:

ie

o

o

.2
lab_: FUNCTION(iI,r ,...) at2n/but_;

/abe/is any legal identifier name,

and constitutes the name of the

function.

.i .2
,_ ,... are legal identifier names

defining input parameters. If the

entire parenthesized list is omitted,

then the function has no input para-

meters.

att2_but_ defines the type of attributes

and, where applicable, precision and

size. The form of specification is the

same as used in data declarations (see

Section 4.2). If no attributes are

supplied, the function is assumed to

be single precision scalar.

BLOCKCLOSING

Both procedure and function blocks are closed with
the statement:

i.

2.

!
i CLOSE lab61 ;
I

The identifier label is optional.

If supplied, it must be the name

of the procedure or function

block.

ii-4

INTERMETRICS INCORPORATED "701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Examples:

ONE: PROCEDURE;

CLOSE ONE;

-procedure body

TWO: PROCEDURE ASSIGN (ARGI) ;

I single assign parameter -

I may be used to return values
from procedure

i •

THREE: FUNCTION MATRIX(4,4) DOUBLE;

CLOSE THREE;

FOUR: FUNCTION (ARGI,ARG2) BOOLEAN;

__two input parameters -for passing values into

function only

CLOSE;

11-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

11.3 DECLARATIONOF PARAMETERSAND LOCAL DATA

Procedures and functions commonly require the use of

locally-defined data. As with program-level data, all

data names must be declared before use by means of

declaration statements. In addition, all input and

assign parameters must appear in local declaration

statements.

Data and parameter declarations must be placed after

the procedure or function opening statement, and

before the first executable statement. It is good

practice, and mandatory in some implementations*, to

place parameter declarations before local data

declarations. The forms of local data and parameter

declarations are identical, and are as described in Section 4.

Examples:

General positioning -

ONE: PROCEDURE(ARGI) ASSIGN(ARG2);

_ I parameter declarations

local data declarations

I,

CLOSE ONE ;

executable statements

* See the User's Manual for any given implementation.

11-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Particular instance -

ONE: PROCEDURE (ARGI) ASSIGN (ARG2) ;

DECLARE ARGI MATRIX(4,4);

DECLARE ARG2 ARRAY(100) SCALAR DOUBLE;

DECLARE TEMP MATRIX(4,4) ;

CLOSE ONE;

_parameters

I_local data

CHARACTER PARAMETERDECLARATIONS

Parameters of character type may be declared to possess

an indefinite maximum length. By this means problems

of truncation of character data during argument passage

can be avoided•

The basic form of declaration is:

l.

DECLARE n_e CHARACTER(.);

The asterisk denotes an indefinite

maximum length•

Example :

ONE: PROCEDURE (A) ;

DECLARE A CHARACTER (.) ;

11-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

11,4 FUNCTIONINVOCATIONS

A function is invoked by the appearance of its name

as an operand in an expression. If the function is

defined with input parameters, a list of arguments to

be passed must follow the appearance of the name. The

precise form of invocation is:

.2
lab_(il,r , •..)

i.

.

o

label is the defined name of the

function.

.2
il,_ ,... is a list of arguments,

which must correspond in number

with the parameters of the function

invoked. Each argument is a HAL/S

expression.

If the function has no parameters,

then the entire parenthesized argu-

ment list must be absent.

11-8

INTERMETRtCS INCORPORATED .701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (61 7) 661-!840

The transmission of the argument list during function

invocation may be viewed as the assignment of the value

of each expression in turn to its corresponding input

parameter (although in any given implementation this

may not actually be the mechanism of transmittal).

A set of rules governing type and precision conver-

sion, and dimension matching similar to the assignment

rules of Section 8 are applicable• These are classified

below according to parameter type.

MATRIXPARAMETER

•

•

Be

The corresponding argument mustbe

of matrix type.

The number of rows and columns of

the argument must be the same as

those of the parameter.

Precision conversion is allowed.

VECTORPARAMETER

.

•

The corresponding argument must be

of vector type.

The length of the vector argument

must be the same as that of the

parameter.

3. Precision conversion is allowed.

11-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

INTEGER/SCALARPARAMETER

io

,

o

The following table gives the

legal argument types:

parameter argument

INTEGER} { INTEGER
SCALAR SCALAR

Conversion of the argument takes

place where necessary. Scalar-

to-integer conversion implies

roundin_ of the value of the

expresslon.

Precision conversion takes place

when necessary and is applied at

the same times as type conversion.

CHARACTERPARAMETER

lo

o

The allowable argument types are

given by the following table:

parameter

CHARACTER

argument

I CHARACTERINTEGER

SCALAR

Rules for the conversion of integer

or scalar values to character type

are given in Appendix A.

ll-10

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

Generally, the working length of the parameter becomes

equal to the length of the expression (after conversion,

where applicable). However, if this would cause the

declared maximum length of the parameter to be exceeded,

truncation of the excess from the right takes place.

BOOLEANPARAMETER

l. The corresponding argument must

be of Boolean type.

The following examples show a selection of both legal

and illegal function invocations.

Examples:

Suppose the following functions are defined:

ONE : FUNCTION INTEGER;

CLOSE;

TWO: FUNCTION (A, B) MATRIX(4,4) DOUBLE;

DECLARE A MATRIX (4 ,4) ;

DECLARE B SCALAR;

CLOSE;

ll-ll

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Let also the following data be declared:

DECLARE M1 MATRIX (4,4),

M2 MATRIX(4,4) DOUBLE,

M3 MATRIX(3,3) ,

S SCALAR,

I INTEGER;

Invocations of the above functions are illustrated

in the following constructs:

!

!

, S = S +ONE;
I

|

' S = S + M
I

IS 1, ONE.

!

, M2 = TWO(M2,S) + M2;

\,!

I
I
_ M2 = TWO(M2,r);

, \

Note: subscripts may be

integer expressions of

any kind.

M2 is converted to

single precision

during transmission.

I is converted to

scalar type during
transmission.

11-12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

The following are illegal invocations:

!

! M2 = TWO(M3,1.5); row and column

dimensions of M3 do

not match those of

parameter A.
!

, M2 = TWO(MI,'ARGUMENT' llI) ;

I
transmission of character

type argument to scalar

parameter B incurs an

illegal type conversion.

Arguments may possess array-
ness. The effects of this

depend on whether or not

the corresponding parameter

is declared to be an array.

See: Guide/20.5.

11-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

11,5 PROCEDUREINVOCATIONS

A procedure is invoked by the use of a CALL statement,

which may, in the case of a procedure with parameters,

also specify the arguments to be passed. The precise

form of invocation is:

!

I CALL /abe/ _i,i2,...) ASSIGN (al,a2,...) ;
i

i. lab@i is the defined name of the

procedure.

1 .2
2. i ,_ ,... is a list of input arguments

which must correspond in number with

the input parameters of the procedure

invoked. Each input argument is a

HAL/S expression.

•

.

If the procedure has no input parameters,

then the entire parenthesized argument

list must be absent.

aI, 2a ,... is a list of assign arguments

which must correspond in number with

the assign parameters of the procedure

invoked, Each argument must be a HAL/S

data item *.

. If the procedure has no assign parameters,

then the entire parenthesized list of

assign arguments, and the ASSIGN

keyword, must be absent.

* Or an assign parameter, if the invocation is nested within

a procedure block.

11-14

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

The transmission of the input argument list during

procedure invocation is identical in nature to func-

tion argument list transmission. The related rules

are given in Section 11.4.

The transmission of the assign argument list follows

stricter rules since values are passed both into and

out of a procedure by this mechanism.

ASSIGNARGUMENTS

l. An assign argument must be a

declared HAL/S data item *.

. An assign argument must match

the corresponding assign para-

meter in type and precision.

. A matrix or vector argument

must match the corresponding

parameter in dimension.

. Only matrix and vector arguments

may be subscripted. Such sub-

scripting must reduce the argu-

ment to scalar type by specifying

one element only.

The following examples show a selection of both

legal and illegal procedure invocations.

* Or an assign parameter if the procedure invocation is

nested inside a procedure block.

11-15

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Examples:

Suppose the following procedures are defined:

ONE: PROCEDURE;

CLOSE;

TWO: PROCEDURE(A,B) ASSIGN(C);

DECLARE A MATRIX(3,3);

DECLARE B INTEGER;

DECLARE C INTEGER;

CLOSE;

Let also the following data be declared:

DECLARE M1 MATRIX(3,3),

M2 MATRIX (3,3) DOUBLE,

M3 MATRIX(4,4) ,

S SCALAR,

I INTEGER,

ID INTEGER DOUBLE;

Invocations of the above procedure are illustrated in

the following constructs:

11-16

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

IE
I

I

I
!
I

CALL ONE;

CALL ONE(I) ; illegal: ONE possesses no

parameters.
T

CALL TWO(M2 ,S+I) ASSIGN(_);
values may be passed in

and out of TWO through I.

type conversion required here.

precision conversion required

here.

CALL TWO(M3, ID) ASSIGN (_
type conversion illegal for

assign arguments.

--precision conversion required.

dimension mismatch: parameter is

a 3 x 3 matrix.

I
I
I CALL TWO(MI,I) ASSIGN(I) ;

I
I

appearance in both places

is legal.

11-17

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The last example introduces an interesting side effect

which occurs when the same data item appears both as an

input argument and as an assign argument. In the

example, changing the value of assign parameter C

during execution of the procedure may, depending on

the implementation and the data type of I, result in

a simultaneous change of input parameter B. The

effect does not occur if type or precision conversion

is required for transmission of the input argument.
The side effect arises as a result of the actual

mechanism used in argument transmission in particular

implementations.

Both input and assign

arguments may possess

arrayness, in which

case the corresponding

parameters must have

an array declaration.

See: Guide/20.5.

11-18

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

11,6 RETURNSFROMPROCEDURESAND FUNCTIONS

When execution reaches the CLOSE statement of a procedure

block, an automatic return to caller takes place. How-

ever, if execution reaches the CLOSE statement of a

function block, a run time error results since the

function has no value to return to the caller. Hence

a function block needs an explicit RETURN statement

to cause the return to take place. In addition, if

returns are required from parts of the code in a

procedure block other than at the CLOSE, an explicit

RETURN statement is required.

PROCEDURERETURN

The RETURN statement of a procedure takes the form:

I
I
I RETURN;
I

Example:

! CHOICE: PROCEDURE(FLAG) ASSIGN(DIR);l
! DECLARE FLAG BOOLEAN;
i
j DECLARE DIR VECTOR(3);

IF FLAG THEN RETURN;

DIR = UNIT(DIR);

CLOSE;

If FLAG i TRUE then procedure merely returns execution

at RETURN. If FLAG E FALSE then 3-vector DIR is

normalized, and procedure returns execution at CLOSE.

11-19

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

FUNCTIONRETURN

The RETURN statement of a function takes the form:

.

I
! RETURN exp ;
I

The resultant value of the

expression exp is returned when

the function returns to its

caller.

The return of an expression by a function is similar

in nature to the transmission of an input argument of

a function to the corresponding parameter, the

function itself playing the role of parameter. During

return, type and precision conversions are possible,

and dimension matching must be ensured. The relevant

rules are the same as those described for argument

transmission in Section 11.4.

Note that since a function block may not be defined with

an array specification, no function may return an array

result.

11-20

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Examples:

I

S

FUNCI: FUNCTION(A) SCALAR;

DECLARE A MATRIX (3,3) DOUBLE;

DECL_2.E I INTEGER;

RETURN I+5; *

RETURN AI,I ; _"

RETU_ 'I--'III;

CLOSE;

type conversion to scalar

required•

conversion to single

precision required•

illegal type conversion

required•

11-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

12, INPUT/OUTPUTSTATEMENTS

Higher order languages possess I/O statements to provide

programs with a means of communicating with their environ-

ment. In HAL/S, simple forms of I/O statement provide

for the sequential input or output of data, including the

generation of printed listings.

This section first introduces the HAL/S concept of

sequential I/O and then goes on to describe the construc-

tion of I/O statements.

12,1 HAL/S INPUT/OUTPUTCONCEPTS

The form of sequential I/O statements in HAL/S is based

on a specific conceptualization of the input-output process.

In this conceptualization, I/O takes place through a number

of "channels", each identified by an integer code. Each

channel is connected to an "I/O device", of which there

are two kinds, "unpaged", and "paged".

UNPAGED DEVICES

An "unpaged I/O device" can be used for both input and

output. It can be visualized as consisting of a "device

mechanism" which performs I/O on a continuous strip, across

which data is written. The data is organized in "columns"

across the strip, and in "lines" down it:

12-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

first

column_

first_ -'-_

line

columns of data

_mB

lines of data

device mechanism

The device mechanism moves from column to column along

each line, and from line to line as it performs I/O.

Normally, the performance of I/O is accompanied by move-

ment from left to right across each line, and downwards

from one line to the next. However, special positioning

commands can modify this behavior.

12-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

On output, the strip continually lengthens as new lines

are written on the device. On input, the strip is of

fixed length, and a run time error occurs if the device

mechanism is requested to read off the lower end.

Data output to an unpaged device is physically written

so that it may, on some future occasion, be read in again

via an unpaged device.

PAGEDDEVICES

A "paged I/O device" can only be used for output. It can

be visualized in much the same way as an unpaged device,

except that the lines of data are organized into "pages":

first columns of

column--_ data

first .___.

line• i

first page

lines of data

first

line

second page i J
device mechanism

first

line

third page

12-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

The paged device is designed to generate printed listings.

The form in which data is physically written on the device

is different from that on an unpaged device. Such data

cannot normally be read back again via an unpaged device.

DATASTORAGE

Data is conceived as being "stored" on a device, even

though in physical reality the device may be a line printer,

the data becoming inaccessible to the computer.

In HAL/S, data is written on the I/O device in "fields" which

can be separated by blank columns, or by a separator character.

The I/O process is stream-oriented: within the confines of

a single I/O statement, the column and line alignment of data

fields need be of no consequence. Data fields may even be

broken over line or page boundaries.

12,2 THE WRITESTATEMENT

The WRITE statement is an executable statement for the

output of data to a paged or unpaged I/O device. The form

of the WRITE statement is as follows:

i explI WRITE (n) , exp 2 n, • • • exp ;
i

i. n is the channel code number, and

lies in the range 0 _ n _ 9*.

. Each exp ks a HAL/S expression whose

value or values are to be written on the

device. The list of expressions may be

arbitrarily long. Alternatively, none

need be supplied.

. Each expression in turn from left to

right is evaluated, and its value (or

values) written on the specified device.

This value mav be implementation dependent. See

Appropriate User's Manual.

12-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

D
In execution, the sequence of events is as follows:

If the WRITE statement is the first to be executed

for the specified device, the device mechanism

positions itself at column 1 of line 1 (on page 1

if the device is paged). Otherwise, the device
mechanism moves down one line from its current

position, and repositions itself at column i.

Data fields are written from left to right along the

line, each field being separated from the next by
5 blanks*.

When the end of a line is reached, the device

mechanism moves to column 1 of the next line and

continues writing data fields. Unless the data

field is of character type, the device does not

attempt to break it over a line boundary if there

is not room for it at the end of a line. Instead,

it begins writing it on the next line.

After finishing execution, the device mechanism is

left positioned one column to the right of the end of

the last data field written. Alternatively, if the

data field abuts the end of a line, it is positioned
at column 1 of the next line.

If no expressions are supplied in the WRITE statement,

the device merely performs its initial positioning.

* This value may be implementation dependent. Some

implementations may allow the user to vary the value by

a run-time option. See appropriate User's Manual.

12-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DATAFORMATS

The format of a data field depends on the type of

expression whose resultant value is being written on

the device, and on whether or not the device is paged.

The formats are, in general, implementation dependent.

Typical formats are shown in Appendix F.

Uni-valued expressions each give rise to a single data

field. Multi-valued expressions each give rise to a

series of data fields, which are written on the device

sequentially in the following way:

a Z-vector expression yields Z scalar data fields,
one for each element. The data fields are laid out

along a line, separated from each other by the standard

number of blanks, and overflowing onto succeeding lines

as required.

an m x n matrix expression yields mn scalar data fields,

one for each element. The matrix is laid out row by row.

Each row is written as if it were an n-vector. The first

element of the second and subsequent rows begin a new

line, vertically aligned under the first element of the
first row.

arrays are written array element by array element,

completing the requirements for one element before

going on to the next. The last data field of one

array element is separated from the first data field

of the next element by the standard number of blanks,

or starting a new line if required,

El

Examples:

Let: M be a 3x3 matrix with M

I be a 3-array of integers

with I E (46 -2)

10ii0105 1.5 0

5 1.0 i.

5 0.i i0

C be a character with C H 'VALUE'

B be a Boolean with B H TRUE

then

I

I WRITE(6) C,M,I;

I WRITE(6) B;
I

would result in output of the following form:

12-6

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

paged output: [132 columns/line]

c M INITIAL POSITION

OF DEVICE MECHANISM

5.0000000E-01 1.5000000E+00 0.0
2.5000000E÷00 1.0000000E÷00 1.0000000E÷00

lr..._,_ 5.0000000E-01 9.999996kE-02 1.0000000E+01 4 6 -2

B FINAL POSITION

OF DEVICE MECHANISM

unpaged output: [80 columns/line]

INITIAL POSITION

EVICE MECHANISM

'VALUE' 5.0000000E-01 1.5000000E_'00 0.0
2.5000000E÷00 1.0000000E+00 1.0000000E+00
5.0000000E-01 9. 999996_E-02 1.0000000E+01

16 -21

B I
FINAL POSITION

OF DEVICE MECHANISM

NOTES:

single precision scalar data fields are a fixed 14 columns

wide.

single precision integer data fields are a fixed ii columns

wide. 12-7

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138-(617) 661 1840

12,3 THE READSTATEMENT

The READ statement is an executable statement for the

input of data from an unpaged I/O device. The form of

the READ statement is as follows:

I READ(n) va_ 1 , vat2 , ... varn ,"
I

i. n is the channel code number, and

lies in the range 0 _ n _ 9*.

. Each vat is any type of data item,

either subscripted or unsubscripted.

The list of items may be arbitrarily

long. Alternatively, none need be

supplied.

. The specified device reads values
into each data item in turn from

left to right.

In execution, the sequence of events is as follows:

If the READ statement is the first to be executed

for the specified device, the device mechanism positions

itself at column 1 of line i. Otherwise, the device

mechanism moves down one line from its current position

and repositions itself at column i.

Data fields are read from left to right along the line.

The device expects each data field to be separated from

the next by a comma and/or at least one blank.

When the end of a line is reached, the device mechanism

moves to column 1 of the next line and continues reading.

Data fields may be broken over the line boundary.

* This value may be implementation depeqdent. See

Appropriate User's Manual.

12-8

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

After finishing execution, the device mechanism

is left positioned one column to the right of the

end of the last data field read in. Alternatively,
if the data field abuts the end of a line, it is
positioned at column 1 of the next line.

If no list of data items is supplied in the READ

statement, the device merely performs its initial
positioning.

If the device reads two consecutive separating
commas, then the value of the data item which would

have been changed by reading a data field between
the commas, is instead left untouched.

DATAFORMATS

The formats of data fields expected by a device on input

depend on the type of data item being read into. The

formats are, in general, implementation dependent. Typical
formats are shown in Appendix F.

Uni-valued data items cause single data fields to be read.

Multi-valued data items cause a series of data fields to be

read sequentially.

• A vector data item causes one data field per vector
element to be read.

A matrix data items causes one data field per matrix
element to be read. Values are read into the matrix

row by row,

Arrayed data items are read into array element by
array element, completing the read requirements for

each element before going on to the next.

12-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

Let M be a 3x3 matrix with initial values given

2.5 1.0 1

.5 0.i i0

Let I be a 3-array of integers,

C be a character data item of maximum length i0,

B be a Boolean.

U

Then

I

I READ(5) M,I,C;

I READ(5) B;
I

I

0.i, 0 ,,

INITIAL POSITION

OF DEVICE MECHANISM

e

0 0.i 0

0 0 0.i

-4 -5 -7 'GOODBYE '

FINAL POSITION

OF DEVICE

MECHANISM

would result in:

o.o0 0.i 0:

0 0.0 0.

this value not changed

by READ statement.

El I - (-4-5 -7)

C - 'GOODBYE'

B - TRUE

12-i0

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

12,4 INPUT/OUTPUTFORMATTING

The formatting of I/O embraces two separate concepts:

D the shape of data fields;

• the position of data fields.

In terms of input, formatting implies that a device can

be made to recognize different shapes of data fields in

a variety of positions. In terms of output, formatting

implies that a device can generate different shapes of

data fields in a variety of positions.

Data field positioning is effectedby direct movement

of the device mechanism. Commands in the form of pseudo-
functions can be inserted into READ and WRITE statements

to cause repositioning of the mechanism.

There is no direct capability in a READ or WRITE statement

for defining different data field shapes. It should be

noted however, that for outpu£, the equivalent of arbitrary

data field shaping can be achieved by using HAL/S'S

character string handling features.

|E

There exists a second type

of input statement called

the READALL statement,

which can be used to input

arbitrary strings of
characters. This can form

the basis for arbitrary

data field shape recogni-

tion on input.

See: Guide/22.1.

' 12-11

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DEVICEMECHANISMPOSITIONING

HAL/S possesses five pseudo-functions which can reposition

a device mechanism during execution of a READ or WRITE

statement. The pseudo-functions are placed in the READ

or WRITE statement as if they were normal data items or

expressions.

Three basic rules underlie the operation of the pseudo-

functions in positioning device mechanisms:

• Horizontal and vertical positioning are separately and

independently controlled.

• The operations of the pseudo-functions are independent

of whether a device is being used for input or output.

An explicit repositioning command taking effect at a

particular point in execution overrides the default

movement in the same direction (horizontal or vertical)

which would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the

device positioning pseudo-functions are described below.

HORIZONTALPOSITIONING

The two-_seudo-functions TAB and COLUMN serve to position

a device mechanism horizontally on a line. Their form is

as follows:

12-12

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

•

2.

•

•

TAB ((_)

COLUMN (8)

and 6 are integer expressions•

TAB(e) moves the device mechanism

left or right by the number of

columns specified by _. Negative

values of e denote movement to the

left; positive values, movement to

the right.

COLUMN(6) moves the device mechanism

left or right to the column indicated

by 8.

Values of e or 6 must not be such as to

try to move the device mechanism left

past column i, or right past the right-

most column*.

If a TAB or COLUMN pseudo-function appears at the

beginning of a READ or WRITE statement, it overrides the

default positioning at column i.

It does not of itself inhibit movement onto the next

line.

If a TAB or COLUMN appears between two expressions in

a WRITE statement, it overrides the standard data field

separation.

Successive TABs are cumulative in action•

The number of columns on any device (i.e. the logical

record length) is assumed constant but implementation

dependent. See appropriate User's Manual.

12-13

INTERMETRICSINCORPORATED-701 CONCORD AVENUE -CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

Example :

If CI, C2, C3 are character data items

with C1 =- 'FIRST'

C2 --- 'SECOND'

C3 = 'THIRD'

and if channel 6 is a paged device

then
I
I

WRITE(6) TAB(-50),CI},COLUMN(5),C2,C3,TAB(2) ;
!

produces output of the following form:

C-',) , ,@

r ,., INITIALi POSITION OF
DEVICE MECHANISM

,-_--_ I _' __ _ ' _ I
•_.._, sEcoNo T_I_ ,_,FI_S_ _

TAB LEFT 50

_ COLOUMNS , MOVE
DOWN 1 LINE

BY DEFAULT

DEFAULT I MOVE TO -

5 BLANKS I COLUMN 5

! FIN_POSrT{ON
TAB_GHT OFDEVICEMECHANISM
2 COLUMNS

12-14

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

VERTICALPOSITIONING

The three pseudo-functions SKIP, PAGE, and LINE serve to

position a device mechanism vertically. PAGE can only be

used in I/O via a paged device; the behaviour of LINE is

different depending on whether a device is paged or unpaged.

The form of the three pseudo-functions is as follows:

l•

2.

•

•

.

SKIP(e)

PAGE(6)

LINE(y)

_, 6, and y are integer expressions.

SKIP(e) moves the device mechanism

downward by the number of lines speci-

fied by _. The value of e may be zero,

in which case SKIP can suppress a de-

fault line advancement. However,

may not be negative (indicating up-

wards movement). SKIPs over page
boundaries are allowed.

PAGE(8) moves the device mechanism

downward by the number of pages

specified by 6. As in SKIP, 6 may not

be negative in value. The relative

line number remains unchanged.

For unpaged devices, LINE(y) positions

the device mechanism at line y. The

value of y must not be such as to cause

upwards movement of the device mechanism•

For paged devices, LINE(y) has a different

behaviour. Let the device mechanism be on

line Z prior to execution of LINE(y). If

y < £ then the device mechanism moves to

line Z on the next page. If y _ I then the

device mechanism moves to line y on the cur-

rent page. The value of y must lie in the

range 1 4 Y 4 L, where L is the number of

lines per page*.

* The number of lines per page is implementation dependent.

See appropriate User's Manual.

12-15

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

If a SKIP, LINE, or PAGE pseudo-function appears at the

beginning of a READ or WRITE statement, it overrides the

default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions do not of themselves

inhibit the default horizontal movement to column i. Neither

does their appearance between two expressions in a WRITE state-

ment affect the standard data field separation.

Successive SKIPs and PAGEs are cumulative in effect.

Examples:

If CI, C2, C3 are character data items

with Cl H 'FIRST'

C2 H 'SECOND'

C3 H 'THIRD'

and if channel 6 is a paged device

then
l
l
i WRITE(6) SKIP(0),CI,LINE(1),C2,C3;

J

produces output of the following form:

INITIAL POSITION

OF DEVICE MECHANISM

ADVANCE TO

LINE 1 OF

NEXT PAGE
START IN COLUMN 1

_I I ', _ i sKiP_O__NHIBITS

"'['"'" __'_ __ "_ _'_--_'-_L DEFAULTLINE,_VANOEDEFAULT_ BU_NKS

I
I

I

DEFAULT 5 BLANKS

FINAL POSITIONING

OF DEVICE MECHANISM

12-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Note: If channel 6 were unpaged, the WRITE statement

would be illegal since it would be calling

for an upwards movement from line 40 to line i.

Further,

I

I WRITE(6) C!,PAGE(1),C2;
i

produces the output of the form:

DEFAULTL.

MOVEMENT TO
i T w

COLUMN

LINE 41

I

I
DEFAULT

5 BLANKS i

i

MOVE TO

LINE 41 1 l

OF NEXT PAGE _ I |

i I

SECOND_]

FINAL POSITION OF DEVICE

INITIAL POSITION OF

_DEVICE MECHANISM

--------PAGE 5

--------'PAGE 6

MECHANI SM

12-17

INTERMETRICS INCORPORATED. 701 CO/,_CORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

12,5 DEVICE ATTRIBUTES

In HAL/S, devices have been characterized as either paged

or unpaged. In the absence of any specific direction on

the part of a user, the following rules determine whether

a device being used is paged or unpaged.

If only WRITE statements appear in a compilation

for a given channel, then the device on that channel

will be paged.

If only READ statements appear, or if both READ and

WRITE statements appear for a given channel, then

the device on that channel will be unpaged.

The user may specifically direct certain channels to be

paged or unpaged, overriding these rules*.

HAL/S contains a FILE

statement by which

random-access I/O

may be effected.

See: Guide/22.2.

* See the User's Manual for a given implementation.

12-18

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

13, REALTIMEPROGRAMMING- I

So far the Guide has made no reference to the dynamic

properties of HAL/S programs. Clearly, any program will
take a finite time to execute but none of the constructs

hitherto described depend on any sense of time for their

operation.

However, the HAL/S language does contain constructs which

depend on a sense of time for their operation. This is

what is meant by the statement that HAL/S is a "real time

programming language". In other words, HAL/S programs

can be written which, when executed, cause operations to

be carried out at desired points or during desired inter-

vals in "real time".

In some implementations of HAL/S, "real time" may be just

what the phrase implies, real clock time. In others, the

"real time" may be simulated in some way by the operating

environment of a HAL/S program: in this case, it can be

referred to as "pseudo-real time".

This section of the Guide explains the basic HAL/S concepts

of real time programming, and describes some of the more

elementary real time programming language forms.

13,1 HAL/SREALTIMECONCEPTS

The true HAL/S concept of a program at run time is an

entity executing over some interval in "real time",

directed and controlled by a Real Time Executive (RTE).

At the outset, the RTE begins execution of the program.

When program execution is completed, control is returned

to the RTE. In HAL/S terminology, the dynamic counter-

part of the static program block, which is executing

under RTE control, is called a "real time process".

13-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

MULTI-PROCESSINGIN HAL/S

Multi-processing is the simultaneous handling of more

than one "real time process". With most present-day

machines, "simultaneous" really means interleaved,

because most machines can at one time only support the

execution of a single machine instruction sequence.

However, this distinction has no significance at the

higher level of the HAL/S language.

The RTE of HAL/S can simultaneously handle an arbitrary*

number of processes created by the user. A number is

attached by the user to each process, called its "priority".

The RTE maintains processes in a "process queue" ordered

by priority, and always endeavors to execute the processes

in order of priority, highest first.

The HAL/S program itself, beginning execution under the

RTE, constitutes the first or "primal process". All other

processes are brought into existence by the execution

of SCHEDULE statements coded into the program. Just as

the primal process has a static counterpart, which is

the program block coded by the user, so must the other

processes have their static counterparts. These are

so-called task blocks, which are coded inside the program

block in a very similar way to procedure blocks. Each

time a task block is invoked by execution of a SCHEDULE

statement, a new process is created and queued by the
RTE.

See the User's Manual for the maximum number supported

in any given implementation.

13-2

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

A n,,_m./_erof program.s, indepen-

dently compiled, can be brought

together at run time. One

of them is chosen by the user

to start execution as the

primal process. Processes

can be generated from the

others by invoking them with

the same form of SCHEDULE state-

ment. Any of the programs are

allowed to contain task blocks

from which more processes in

turn can be created.

See : Guide/23.1-23.3.

13-3

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

STATES OF A PROCESS

It is now possible to represent the behavior of the

RTE by a more formal description of the possible

states* in which a process can exist. This in turn

will introduce other HAL/S constructs for controlling

the activities of the RTE.

A process can be in either of the following two major

states at a given time:

ACTIVE STATE: a process is in an active state

when it exists in the RTE's process queue.

The state actually comprises three substates

or minor states in any one of which an active

process may be at a given time.

INACTIVE STATE: a process is defined for

completeness as being in the inactive state

if it does not exist in the process queue.

The minor states of an active process are as follows:

EXECUTING: an active process is "executing"

when it has actually been put into execution

by the RTE, operating on the priority principle

already described. The number of processes which

can be in this state simultaneously is implementa-

tion dependent**.

The states to be defined do not correspond one-to-one

with the RTE states described in the Language Specification

document. The latter are defined for the convenience of

the formal description of language constructs. The former

are defined with user convenience in mind.

** In most implementations it is likely to be I, but see

the User's Manual for a given implementation.

13-4

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

READY: an active process is "ready" if it

is available for execution, but higher priority

processes in execution are currently barring it.

The occurrence of a process first entering the

ready state will be called its "initiation".

WAITING: an active process is"waiting" if it

is neither ready nor executing. Some condition

setup by the user prevents it being available

for execution by the RTE.

When a process is created by invoking a task block by a

SCHEDULE statement, it makes a transition from the inactive

state to an active state. It is entered into the process

queue in either the ready or the waiting state, depending
on the form of the SCHEDULE statement. If it is entered in

the ready state, then depending on its priority, it may

immediately be elevated to the executing state.

A process is caused to make a transition from an active

state to the inactive state (or removed from the process

queue) by a TERMINATE statement. The process is said

to have been "terminated".

The priority of an active process may be changed by an

UPDATE PRIORITY statement.

A process may be forced into the waiting state by execution

of a WAIT statement.

The statements outlined above are among the real tJaue

programming language forms to be described later in this
section.

PROCESSSWAPPING& BREAKPOINTS

A process swap is a phi2 of state transitions in which

one process leaves the executing state, and a second enters

it from the ready state. The process swap may occur because

the first process has been forced into the inactive state

or the waiting state, or because the second process has a

higher priority than the first.

13-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

The HAL/S language itself makes no assumptions on where

process swapping can occur. However, most imple.m_itations ,
depending on the object machine characteristi_S,'/t_t

process swapping to given places in the HAL/S code

sequences under execution by the RTE. These places aze

called "breakpoints". The determination of breakpoints

is a function of the HAL/S compiler for a given ilplemen-

tation, and no language construct exists to modify their
existence*.

The effect of breakpoints is to superimpose a kind of time

granularity on the operation of the RTE.

PRIORITYSCALES

The number specifying the priority P of a process im

an integer in the range:

0 _ P _ 255**

The primal process is assigned a priority of 50 t* by

the RTE on beginning execution.

El
As an example, in the HAL/S-360 implementation, bFeak-

points may occur at the beginning, end, or mille of an
executable statement.

These values are, however, implementation d e__t.
See appropriate User's Manual.

'i

13-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHU6ETt'tS 02138 • (617) 661-1840

PROCESSDEPENDENCY

Suppose that there are two processes, A and B, and

that A creates process B during the course of its

execution. At the time of creation, B may be specified

to be either "dependent" on or "independent" of A.

If B is dependent, it means that it depends for its

existence on the existence of A. If B is independent,

then A may cease to exist without affecting B's existence.

However, an overriding rule is that all other processes

are always dependent on the primal process for their
existence.

The consequences of dependency will be seen when the

flow of execution through program and task blocks is

described in Section 13.3, and again when the TERMINATE

statement in introduced in Section 13.5.

13,2 TASK BLOCK DEFINITIONS

A task block is a static block of code interior to a

program, from whence processes can be created by means

of the SCHEDULE statement. Task blocks may only be
defined at the program level, and not nested inside

procedure or function blocks define-Tin a program. This
is illustrated as follows:

13-7

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Program

Task Block

Procedure Block

Nested Function

Block

Region where TaskBlocks are legal

and may be nested.

13-8

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHLJSETTS 02138- (617) 661 1840

Task block definitions are similar to program block

definitions as described in Section 3, and have similar

opening and closing statements.

RELATIVEPOSITIONOF TASKDEFINITIONS

Statements invoking a task block should normally follow
its block definition.

This rule is not absolute -

it can be circumvented by

the use of a task declara-

tion statement.

See : Spec./4.6.

13-9

INTERMETRICS IN'CORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

TASKOPENING

The statement opening a task block takes the form:

lo

!
I
I label :TASK;

/abe/is any legal identifier

name, and constitutes the name

of the task block.

TASK CLOSING

The statement closing a task block takes the form:

l.

2.

I
I CLOSE labz/;
I

The identifier lab0,,,g is optional.

If supplied, it must be the name

of the task block.

Example:

DISPLAY: TASK;

1 task body

CLOSE DISPLAY;

13-10

INTERMETRICS IN'CORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

LOCALDATADECLARATIONS

Local data can be declared in a task block in exactly

the same way as it is declared in a procedure or

function block. The declarations appear after the

task opening statement, and before the first executable

statement of the block. The forms of the declarations

have been described in Section 4.

Examples:

general positioning -

DISPLAY: TASK;

local data declarations

executable statements

13-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 021,38 • (617) 661-1840

particular instance -

DISPLAY: TASK;

DECLARE S CHARACTER(10),I_
I INTEGER;

CLOSE DISPLAY;

local data

13,3 FLOWOF EXECUTIONIN PROGRAMAND TASKBLOCKS

The flow of execution through program and task blocks

is subject to a new interpretation, based on the

concepts of real time programming introduced in this

section• Programs and tasks are treated together since

their representations at run time are in both cases

real time processes•

Execution of a process begins with the first executable

statement in the corresponding static program or task

block• It continues, and if not terminated by some

other process, ends in one of the following ways:

• by execution of a TERMINATE statement

terminating itself;

• by reaching the CLOSE statement of the

block;

• by execution of a RETURN statement in
the block.

If execution ends by self-termination, the process goes

into the inactive state and is removed from the process

queue• All dependents of the process are treated likewise•

If execution ends on a CLOSE or RETURN statement, the

process goes into the inactive state directly only if

it has no dependents. Otherwise, it goes into a waiting

state until the dependents have in their turn terminated.

i

13-12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

FORMOF RETURNSTATEMENT

The form of RETURN statement for programs and tasks

is the same as for procedures:

!
!

' RETURN ;
!

t

13,4 THE SCHEDULESTATEMENT

The SCHEDULE statement is an executable statement causing a

new process to be placed in the process queue, or "initiated".

The SCHEDULE statement specifies a task block from which the

process is to be created, and the priority which it is to

be given. A condition for the initiation of the process can

be supplied.

Only one process derived from a given task block may

be act-l-ve at any given time.

The form of the SCHEDULE statement varies, depending on

whether it specifies immediate, or delayed initiation

(transition to the ready state).

IMMEDIATEINITIATION

The following variant of the SCHEDULE statement is the

simplest. It causes the creation of a process which

is placed in the process queue in the ready state. The

process is thus available for execution immediately.

13-13

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661 1840

!

'SCHEDULE label PRIORITY (_) DEPENDENT;

I • A process is created from the task

block labef and placed in the process

queue in the ready state• The

process created is also known by
the name label.

• is an integer expression specifying

the priority of the newly-created

process• It must lie in the legal

range for a given implementation•

• The keyword DEPENDENT is optional•

Its presence denotes the dependency

of the process created on the

process executing the SCHEDULE

statement• In its absence, the

processes are independent.

Examples:

SCHEDULE DISPLAY PRIORITY(100) DEPENDENT;

SCHEDULE RECOVER PRIORITY(255);

13-14

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DELAYEDINITIATION

The following form of the SCHEDULE statement causes

a process to be piaced in the process queue in the

waiting state• The process is transferred to the ready

state on a specified time criterion being met. There

are two variants, each with a different time criterion.

• INITIATION after some duration.

!

.SCHEDULE label IN i_te%v_ PRIORITY(e) DEPENDENT;
!

I. A process called Zabe£is created from the

corresponding task block and placed in the

process queue in the waiting state•

o PRIORITY(e) and DEPENDENT have the same

meanings as described in the previous
form of SCHEDULE statement.

. The phrase IN int_v_ indicates that the

process is to be put in the ready state

after a specified interval in the waiting

state, i_te%u_ is a scalar expression whose

value specifies the duration in seconds•

• If the value is negative or zero, the

process is put in the ready state immediately.

13-15

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• INITIATION at a given time.

I

SCHEDULE label AT t/me PRIORITY (_) DEPENDENT;

lo A process called label is created from

the corresponding task block, and placed

in the process queue in the waiting state.

, PRIORITY(s) and DEPENDENT have the same

meanings as described in the previous

forms of SCHEDULE statement.

. The phrase AT t/me indicates that the

process is to be put in the ready state

at a specified real time. t/me is a

scalar expression whose value specifies
the time in seconds.*

• If the indicated time is in the past,

the process is placed in the ready state

immediately.

The real time origin is not specified by the language.

The origin is normally coincident with the initiation

of the primal process. Some implementations allow

its value to be preset at run time. See appropriate

User's Manual.

13-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661 -1840

Examples:

SCHEDULE ALPHA AT 1.25E4 PRIORITY(I+5);

SCHEDULE BETA IN S+15.5 PRIORITY(20);

SCHEDULE statements can also

specify the cyclic execution

of a process until a stopping

criterion is met. An explicit

specification of the interval

between cycles can also be

given.

See: Guide/23.4& 23.5,

13-17

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661 1840

13,5 OTHERREALTIME FEATURESOF HAL/S

Three other real time programming statements which

have already been mentioned are now described. These

are the TERMINATE, WAIT, and UPDATE PRIORITY statements.

Certain other useful constructs are also introduced.

TERMINATESTATEMENT

A process is forced to the inactive state (removed from

the process queue) by means of the TERMINATE statement.

Its form is shown below:

l.

.

TERMINATE lab6£ ;

The appearance of label is optional.

If present, the statement terminates

an active process called label .

If /abe/ is absent, then the process

executing the TERMINATE statement is

terminating itself.

In order to make independent processes truly independent,

HAL/S places an added restriction on the operation of

the TERMINATE statement. A process is only allowed to

use it to terminate itself or its dependents.

Note that when a process is terminated by execution of

a TERMINATE statement, all its dependents are automatically
terminated at the same time.

13-18

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661 1840

Examples:

l
t TERMINATE;

i TERMINATE BETA;l
!

self termination

termination of dependent

If a number of processes are to be terminated

simultaneously, the TERMINATE statement can

specify a list of process names:

I
t TERMINATE ALPHA, BETA, GAMMA;
t
!

WAIT STATEMENT

The WAIT statement is used to force the process executing

it into a waiting state until some condition is met, where-

upon it returns to the ready state. Three forms, each

with a different condition, are described below.

• WAIT _or a duration.

0

o

.

!
! WAIT int_%v_ ;
t

The statement indicates that the

process is to be placed in the

waiting state for a specified

duration.

i_6%vaZ is a scalar expression

specifying the duration in seconds.

A negative or zero value results in

the process not leaving the ready

state.

13-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

• WAIT until some time.

i.

•

•

WAIT UNTIL /im£ ;

The statement indicates that

the process is to be placed

in the waiting state until

some given time.

//m£ is a scalar expression

specifying the time of return

to the ready state, in seconds*•

Specification of a time in the

past results in the process not

leaving the ready state•

• WAIT for dependents.

l •

.

WAIT FOR DEPENDENT;

The statement indicates that the

process is to be placed in the

waiting state until all its

dependent processes have termin-
ated.

If there are no dependents, the

statement has no effect•

Examples:

WAIT UNTIL DELTA T+15E2;

WAIT S/2;

WAIT FOR DEPENDENT;

See the discussion on the SCHEDULE statement in

Section 13.4 for a footnote remarking on the real

time origin•

13-20

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661 1840

UPDATEPRIORITYSTATEMENT

The UPDATE PRIORITY statement is used to change the

priority of an active process. Its form is:

lo

.

.

UPDATE PRIORITY label TO _;

The process whose priority is to

be changed is specified by /abe.

The name label is optional. If

omitted, the process executing
the statement is indicated.

is an integer expression whose

value indicates the new priority

value to be assigned.

Examples:

UPDATE PRIORITY TO 16;

UPDATE PRIORITY ALPHA TO I+20;

Since the RTE operates on a basis of priority, apparently
a user could control the execution of a desired set of

processes by manipulating their relative priorities.

Although this is entirely possible, it is not recommended

since the behavior of such a priority-driven scheme would

depend on how many processes an RTE could bring into the

executing state simultaneously, which is an implementation-

dependent figure.

13-21

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

REAL TIME BUILT-IN FUNCTIONS

Two built-in or library functions are of utility

in constructing real time programs:

Function Comments

RUNTIME

PRIO

returns the current

value of real time as

a scalar, in seconds.

returns the priority

of the process in-

voking the function

as an integer.

MAJOR STATE INDICATION

There exists a way of finding out whether the current

state of any process is either active or inactive (i.e.

whether or not it exists).

The name of the process can be used as if it were a

Boolean variable. The following tables shows the

correspondence between state and truth value.

State Value

ACTIVE TRUE

INACTIVE FALSE

Example:

to write a message if a process ALPHA exists -

t

I IF ALPHA THEN WRITE(6) 'ALPHA IS ACTIVE' ;I
t
I

13-22

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661 1840

13,6 A SIMPLEREALTIME PROGRAM

The utility and importance of the constructs defined

in this section can only be properly understood by

presenting an actual example of a real time program.

The following example is given in the form of a problem
and its solution.

PROBLEM

The problem is to write a program which, when run on a

computer facility with remote interactive terminals,

will aid users in electronic circuit design (to take

an arbitrary example). A user begins each design

session by logging onto the facility at a terminal, and

invoking execution of the circuit design program.

The program is to be set up so that, at the outset, the

user may specify the desired duration of his session.

The program is then to interrupt the user's calculations

every 10 minutes and remind him how much time he has

used. At the expiration of the specified session duration,

the program is to allow the user 10 minutes more and then

terminate the session.

SOLUTION

Only the overall features of the program from the real

time programming standpoint are illustrated here. The

actual circuit design algorithms are of no consequence.

Execution of the circuit design program implies the

existence of three real time processes.

a SUPERVISOR process controlling the two

others, which determines the session dura-

tion, and makes arrangements to terminate

the session at its expiration. Most of the

time this process will be in the waiting state.

13-23

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a TIMER process which informs the user how

much time he has used every i0 minutes. This

process is also mostly in the waiting state,

temporarily being in execution every i0 minutes.

a CALCULATOR process which actually interacts

with the user in his design session. This

process is executing most or all of the time.

The following diagram summarizes the activities of the

three processes.

START

SUPERVISOR

i. determine

session length

2. schedule TIMER

and CALCULATOR

processes

3. wait till end

of session

4. signal i0
minutes more

5. wait i0 minutes

6. signal end of

session and

terminate

/__-_ TIMER

i. waI
minutes

2. signal

time
used

CALCULATOR

interactive

execution of

design algor-
ithms

13-24

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Clearly, in order for TIMER to interrupt CALCULATOR reliably

every 10 minutes, it must have a higher priority than

CALCULATOR. Likewise, SUPERVISOR should be of higher

priority than CALCULATOR. The relative priorities of

SUPERVISOR and TIMER do not matter since TIME is mostly

in the waiting state anyway. The table below shows

suitable priorities for each of the three processes.

process priority

SUPERVISOR

TIMER

CALCULATOR

5O

5O

25

13-25

INTERMETRICSINCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

The HAL/S program corresponding to these processes
is as shown below:

SUPERVISOR: PROGRAM ;_-

DECLARE S SCALAR;

TIMER: TASK; _-

DO WHILE TRUE;

WAIT 600;

WRITE (6)

END ;

CLOSE TIMER;

CALCULATOR: TASK; •

___oSUPERVISOR will be the

primal process, initiated

by the RTE at time 0.0

with priority 50.

TIMER task block

'YOU HAVE USED 'I RUNTIME/60]I' MINS.' ;

_infinite loop: wait 600

seconds and signal time

used

• CALCULATOR task block

design algorithms

CLOSE CALCULATOR; first executable state-

. ment of program

WRITE(6) 'TYPE SESSION DURATION IN MINS.';
A determine session

READ (5) S ; _ - duration
SCHEDULE TIMER PRIORITY(50);

SCHEDULE CALCULATOR PRIORITY (25); _ Schedule TIMER &

WAIT S 60; _ _CALCULATOR processes

WRITE (6) 'TIME UP-10 MINS. MORE ALLOWED';'_Wait for session

WAIT 600; _ _duration
WRITE(6) 'END OF SESSION';

"Wallow i0 minutesTE RMINATE ;

CLOSE SUPERVISOR; _ more

_signal end of
session & terminate

13-26

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The constructs described

above enable real time

processes to be manipu-

lated according to time

criteria. Other constructs

enable their manipulation

according to "event" cri-

teria. HAL/S "events" are

Boolean-like data types

whose values are accessible

to the RTE. Their values

can be set by the user,

thus indirectly controlling

the real time process

states.

See: Guide/24.

The problem of controlling

the sharing of data by two

or more processes is also

important.

See: Guide/26.4.

13-27

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

14, SUMMARYOF PARTI

Part I of the Programmer's Guide has presented a wide

variety of the simpler constructs of the HAL/S language.

It has laid sufficient ground work for the understanding

of more complex language forms which are to be presented

in Part II.

14-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CONTENTSOF PART II

Part II of the Programmer's Guide describes other more

advanced language constructs important in satisfying

general purpose progran_ning needs. The topics presented

in different sections of Part II are largely unrelated

to one another. They may therefore be studied as required

in any desired order. A detailed knowledge of the

material in Part I is, however, assumed.

Paragraphs of text enclosed in horizontal bars refer to

the existence of other less important language forms

described in the Language Specification Document or the

Appendices to the Guide.

15. COMPOOLS AND COMSUBS

16.

17.

15.1

15.2

15.3

15.4

15-1

RELATIONS BETWEEN PROGRAMS, COMPOOLS AND

COMSUBS 15- 2

THE COMPOOL BIDCK 15-6

EXTERNAL PROCEDURE AND FUNCTION BLOCKS 15-8

BLOCK TEMPLATES 15-8

ADDITIONAL DATA INTIALIZATION FORMS

16.1 IMPLIED INITIAL LIST REPETITION

16.2 USE OF REPETITION FACTORS

16.3 PARTIAL INITIALIZATION

16.4 STATIC AND AUTOMATIC INITIALIZATION

16-1

16-1

16-3

16-4

16-6

BIT STRINGS 17-1

17.1 BIT STRING LITERALS 17-1

17.2 DECLARATION OF BIT STRING DATA ITEMS 17-3

17.3 BIT STRING SUBSCRIPTING 17-4

17.4 BIT STRING OPERATIONS 17-7

17.5 BIT STRING ASSIGNMENT 17-12

17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS 17-13

17.7 BIT STRING ARGUMENTS AND PARAMETERS 17-17

17.8 BIT STRING FUNCTIONS 17-20

17.9 BIT STRINGS IN INPUT/OUTPUT 17-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

18.

19.

MULT I-D IMENS IONAL ARRAYS

18 •1 DECLARATION

18.2 ORDER OF INTIALIZATION

18.3 SUBSCRIPTING

STRUCTURES

19.1

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

19.10

19. ii

19.12

HAL/S STRUCTURE CONCEPTS

STRUCTURE TEMPLATES

STRUCTURE DECLARATIONS

NESTED STRUCTURES

QUALIFICATION AND STRUCTURE REFERENCING

SUBSCRIPTING IN STRUCTURES

TREE-EQUIVALENCE OF STRUCTURES

STRUCTURE ASSIGNMENTS

STRUCTURES IN CONDITIONAL CONSTRUCTS

STRUCTURE ARGUMENTS AND PARAMETERS

STRUCTURE FUNCTIONS

STRUCTURES IN INPUT/OUTPUT

20. HAL/S ARRAY PROCESSING FEATURE

21.

20.1

20.2

20.3

20.4

20.5

20.6

20.7

18-1

18-1

18-2

18-3

19-1

19-1

19-5

19-9

19-14

19-16

19-22

19-28

19-33

19-36

19-38

19-41

19-43

20-1

THE ARRAYNESS OF OPERANDS 20-2

ARRAYED EXPRESS IONS 20-4

ARRAYED SUBSCRIPTING 20-9

ARRAYED ASSIGNMENTS 20-13

ARRAY COMPARISONS 20-16

ARRAYED ARGUMENTS IN FUNCTIONS AND PROCEDURES 20-18

ARRAYS IN INPUT/OUTPUT 20-25

EXPLICIT CONVERSIONS 21-1

21.1 VECTOR AND MATRIX CONVERSIONS 21--1

21,2 INTEGER AND SCALAR CONVERSIONS 21-3

21.3 BIT CONVERSIONS 21-9

21 .4 CHARACTER CONVERSION 21-13

21.5 SUBBIT PSEUDO-CONVERSION 21-17

iI

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

22.

23.

24.

25.

26.

27.

ADDITIONAL INPUT/OUTPUT FEATURES 22-1

22.1 THE READALL STATEMENT 22-1

22 .2 RANDOM ACCESS INPUT/OUTPUT 22-5

REAL

23.1

23.2

23.3

23.4

23.5

23.6

TIME PROGRAMMING - II 23-1

PROGRAM PROCESSES 23-1

PROGRAM TEMPLATES 23-5

CREATING AND CONTROLLING PROGRAM PROCESSES 23-6

CYCLIC PROCESSES 23-9

SCHEDULE STATEMENT FOR C_CLIC PROCESSES 23-11

TERMINATING AND CANCELLING CYCLIC PROCESSES 23-18

REAL

24.1

24.2

24.3

24.4

24.5

24.6

24,7

24.8

TIME PROGRAMMING - III 24-1

HAL/S EVENTS 24-'2

DECLARATION OF EVENT DATA ITEMS 24-3

EVENT EXPRESSIONS 24-5

CHANGING VALUES OF EVENTS 24-8

EVENT EXPRESSIONS IN SCHEDULE STATEMENT 24-13

EVENT EXPRESSIONS IN WAIT STATEMENT 24-20

EVENTS IN BOOLEAN CONTEXT 24--22

PROCESS EVENTS 24-23

ERROR RECOVERY AND SIMULATION

25,1 HAL/S RUN-TIME ERROR CONCEPTS

25.2 ERROR ENVIRONMENT MODIFICATION

25 .3 ERROR SIMULATION

DATA

26.1

26,2

26.3

26.4

STORAGE AND ACCESS

PACKING DENSITY OF STORED DATA

ORDERING OF STORED DATA

TEMPORARY AND REMOTE STORAGE

ACCESS TO SHARED DATA

HAL/S AND REENTRANCY

27 .1 DETERMINING REENTRANCY REQUIREMENTS

27.2 EXCLUSIVE PROCEDURES AND FUNCTIONS

27.3 REENTRANT PROCEDURES AND FUNCTIONS

25-1

25-1

25-4

25-17

26-1

26-2

26-6

26-i0

26-15

27-1

27-1

27-2

27-7

ii::l.

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

28.

29.

30.

31.

32.

THE HAL/S NAME FACILITY

28.1

28.2

28.3

28.4 THE NAME PSEUDO-FUNCTION

28.5 NULL POINTER VALUES

28.6 INITIALIZATION OF NAME DATA ITEMS

28.7 NAME ASSIGNMENTS

28.8 NAME COMPARISONS

28.9 ARGUMENT PASSAGE OF POINTER VALUES

28.10 POINTER VALUES IN INPUT�OUTPUT

28-1

HAL/S NAME CONCEPTS 28-1

DECLARATION OF NAME DATA ITEMS 28-3

INDIRECT ACCESS THROUGH NAME DATA ITEMS 28-8

28-16

28-28

28-28

28-31

28-36

28-40

28 -44

REPLACE MACROS AND INLINE FUNCTIONS

29.1 THE PARAMETRIC REPLACE STATEMENT

29.2 USE OF REPLACE MACROS

29.3 IDENTIFIER GENERATION

29.4 INLINE FUNCTIONS

29-1

29-1

29-3

29-8

29-9

MANAGERIAL CONTROL OF ACCESS TO DATA

AND CODE

30.1

30.2

30.3

30.4

ACCESS CONTROL IN HAL/S

ACCESSING PROTECTED COMPOOL DATA

PROTECTION OF AN ENTIRE COMPOOL

ACCESSING PROTECTED PROGRAMS AND

COMSUBS

30-1

30-1

30-2

30-3

30-4

INTERFACES WITH NON--HAL/S CODE

31.1%MACROS

31.2 REFERENCING NON-HAL/S PROCEDURES AND

FUNCTIONS

31-i

31-2

31-5

SUMMARY OF PART II 32-1

'APPENDICES :

A: STANDARD CONVERSION FORMATS

B: BUILT-IN FUNCTIONS

C- ORDERING OF DATA ELEMENTS

D ". COMPILE-TIME COMPUTATIONS

E : HAL/S KEYWORDS

F : STANDARD INPUT/OUTPUT FORMATS

E I INDEX

iv

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

22.

23.

24.

25.

26.

27.

ADDITIONAL INPUT/OUTPUT FEATURES 22-1

22.1 THE READALL STATEMENT 22-1

22.2 RANDOM ACCESS INPUT/OUTPUT 22-5

REAL

23.1

23.2

23'3

23.4

23.5

23.6

TIME PROGRAMMING - II 23-1

PROGRAM PROCESSES 23-1

PROGRAM TEMPLATES 23-5

CREATING AND CONTROLLING PROGRAM PROCESSES 23-6

CYCLIC PROCESSES 23-9

SCHEDULE STATEMENT FOR C_CLIC PROCESSES 23-11

TERMINATING AND CANCELLING CYCLIC PROCESSES 23-18

REAL

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

TIME PROGRAMMING - III 24-1

HAL/S EVENTS 24-2

DECLARATION OF EVENT DATA ITEMS 24-3

EVENT EXPRESSIONS 24-5

CHANGING VALUES OF EVENTS 24-8

EVENT EXPRESSIONS IN SCHEDULE STATEMENT 24-13

EVENT EXPRESSIONS IN WAIT STATEMENT 24-20

EVENTS IN BOOLEAN CONTEXT 24-22

PROCESS EVENTS 24-23

ERROR RECOVERY AND SIMULATION

25.1 HAL/S RUN-TIME ERROR CONCEPTS

25.2 ERROR ENVIRONMENT MODIFICATION

25.3 ERROR SIMULATION

DATA

26.1

26.2

26.3

26.4

STORAGE AND ACCESS

PACKING DENSITY OF STORED DATA

ORDERING OF STORED DATA

TEMPORARY AND REMOTE STORAGE

ACCESS TO SHARED DATA

HAL/S AND REENTRANCY

27.1 DETERMINING REENTRANCY REQUIREMENTS

27.2 EXCLUSIVE PROCEDURES AND FUNCTIONS

27.3 REENTRANT PROCEDURES AND FUNCTIONS

25-1

25-1

25-4

25-17

26-1

26-2

26-6

26-10

26-15

27-1

27-1

27-2

27-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

28.

29.

30.

31.

32.

THE

28.1

28.2

28.3

28.4

28.5

28.6

28.7

28.8

28.9

28.10

HAL/S NAME FACILITY 28-1

HAL/S NAME CONCEPTS 28-1

DECLARATION OF NAME DATA ITEMS 28-3

INDIRECT ACCESS THROUGH NAME DATA ITEMS 28-8

THE NAME PSEUDO-FUNCTION 28-16

NULL POINTER VALUES 28-28

INITI_ALIZATION OF NAME DATA ITEMS 28-28

NAME ASSIGNMENTS 28-31

NAME COMPARISONS 28-36

ARGUMENT PASSAGE OF POINTER VALUES 28-40

POINTER VALUES IN INPUT/OUTPUT 28-44

REPLACE MACROS AND INLINE FUNCTIONS 29-1

29.1 THE PARAMETRIC REPLACE STATEMENT 29-1

29.2 USE OF REPLACE MACROS 29-3

29.3 IDENTIFIER GENERATION 29-8

29.4 INLINE FUNCTIONS 29-9

MANAGERIAL CONTROL OF ACCESS

AND CODE

30.1 ACCESS CONTROL IN HAL/S

30.2 ACCESSING PROTECTED COMPOOL DATA

30.3 PROTECTION OF AN ENTIRE COMPOOL

30.4 ACCESSING PROTECTED PROGRAMS AND

COMSUBS

TO DATA

INTERFACES WITH NON-HAL/S CODE

31.1 %MACROS

31.2 REFERENCING NON-HAL/S PROCEDURES AND

FUNCTIONS

SUMMARY OF PART I I

30-1

30-1

30-2

30-3

30-4

31-1

31-2

31-5

32-1

•APPENDICES :

A: STANDARD CONVERSION FORMATS

B: BUILT-IN FUNCTIONS

C: ORDERING OF DATA ELEMENTS

D: COMPILE-TIME COMPUTATIONS

E : HAL/S KEYWORDS

F : STANDARD INPUT/OUTPUT FORMATS

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

15, COMPOOLSAND COMSUBS

0

The HAL/S program was represented in Part I of this Guide

as a totally seif_contained unit. In particular, the

program was said to contain declarations of all its own

data, and definitions of all the procedure and function

blocks it needed to invoke.

However, a HAL/S program may also reference data declared

externally, and invoke procedure or function blocks declared

externally*. This ability is of considerable importance

in the creation of large programs by teams of programmers

because it facilitates the separate and parallel develop-

ment of the programs' constituent algorithms. Further

advantages will become apparent during the renewed discussion

of real time multi-processing in Section 23.

In HAL/S, data external to a program is defined in a block

called a COMPOOL. Externally defined procedures and functions

arecollectively called COMSUBS.

External procedures and functions in HAL/S are similar

to the FUNCTIONS and SUBROUTINES of FORTRAN. External

data roughly corresponds to the COMMON data of FORTRAN.

15-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

15,1 RELATIONSBETWEENPROGRAMS,COMPOOLSAND COMSUBS

The compools and comsubs referenced by a program are

themselves separately compilable entities. For example,

when a program invokes an external procedure, which

shares with it the use of data in a single compool, then

a total of three separate compilation units is involved*.
This situation is shown below:

PROGRAM

invocation

and return

_ata referenc/

EXTERNAL

PROCEDURE

O

COMPOOL

The object modules resulting from their compilation have

to be "link-edited" to produce a single executable load
module.

15-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Section 3 of the Guide described one kind of compilation

unit - the program block - but there are four kinds of

compilation units in the HAL/S language:

PROGRAM, the onlyindependently executable

compilation unit;

EXTERNAL PROCEDURE, callable from a program

or any other comsub;

EXTERNAL FUNCTION, also callable from a

program or any other comsub;

COMPOOL, defining data shared by programs

and comsubs, but containing no executable

code.

The HAL/S language insists upon a full declaration of all

data, and invariably checks the compatibility of function

and procedure definitions with their invocations. These

precautionary measures are specifically extended to compool

data and comsubs through the use of so-called "block

templates".

Every program or comsub which references compools or other

comsubs must be provided with block templates of the compila-

tion units referenced.

COMPOOL TEMPLATE - contains data declarations

identical with those of the compool itself,

so that the referencing compilation unit

possesses a complete description of the data.

EXTERNAL FUNCTION TEMPLATE - contains an input

parameter list identical with that of the

external function itself, so that the

compatibility of its invocations by the

referencing compilation unit can be verified.

EXTERNAL PROCEDURE TEMPLATE - contains input and

assign parameter lists identical with those

of the external procedure itself, so that the

compatibility of its invocations by the

referencing compilation unit can be verified.

15-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The required block templates are included in the

compilation units which reference the corresponding

compools and comsubs. For example, in the case already

described of a program invoking an external procedure

and sharing data in a single compool, the situation is
as shown :

COMPOOLTEMPLATE

EXTERNAL

PROCEDURE

TEMPLATE

program

compilation unit

J !

I i

I i

I I

COMPOOL

TEMPLATE

I n oc I I

PROGRAM I I i v ation . [EXTERNAL I I

I;_an°re_ I_O__I _

procedure
compilation

unit

Ico,ooI

15-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

TO summarize, when the term "compilation unit" was

introduced in Section 3 of the Guide, its meaning

was the same as "program block" because the existence

of compools and comsubs had not been considered. Now

it is apparent that a c_pilation unit does not

necessarily contain executable code (it may be a

compool), and neither is it necessarily just a single

block of executable code (one or more templates may be

included in it).

In HAL/S, block templates are designed to eliminate

incompatibility between separately compiled modules as

a source of software unreliability. It may be objected

however that no language construct can force the properties

of a compool or comsub to be reflected correctly in the

corresponding block template*. The use of correct

templates is generally insured by an implementation depen-

dent software management scheme. Part of such a scheme

would be the automatic generation of block templates

during compilation of the corresponding compools and

comsubs.

* Neither can it ensure that the object modules "link-

edited" together are the correct versions.

15-5

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

15.2 THE COMPOOLBLOCK

The compool block has been introduced as an external

block of data accessible to programs and comsubs with

which the appropriate block template is included. It

consists of opening and closing statements delimiting

a sequence of data declarations.

COMPOOLOPENING

The statement opening a compool block takes the form:

i •

! lab_ : COMPOOL;
I
f

/abe/ is any legal identifier name,

and constitutes the name of the

block.

COMPOOLCLOSING

The compool block is closed with the statement:

i.

2.

I
I CLOSE labe/ ;
I

The identifier /abe/ is optional.

If/abe/is supplied, it must be the

labe/ supplied on the opening state-
ment of the block•

15-6

INTERMETRICS INCORPORATED • 701 cONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

COMMON: COMPOOL;

CLOSE COMMON;

data declarations

COMPOOLDATADECLARATIONS

Declaration of data in a compool differs in no respect

from data declarations in a program, as described in

Section 4. In particular, there is no objection to the

initialization of data in a compool.

Example:

POOL: COMPOOL;

DECLARE VZERO VECTOR INITIAL(0);

DECLARE INTEGER DOUBLE, I, J, K;

DECLARE CC CHARACTER (i 0) ;

CLOSE POOL;

Note that REPLACE statements, which are placed together with

declarations, can also appear in a compool, and thus affect

any program or comsub with which the corresponding compool

template is included. Simple REPLACE statements were

described in Section 5.

15-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

15,3 EXTERNALPROCEDUREAND FUNCTIONBLOCKS

Comsubs have been introduced as external function and

procedure blocks callable from programs or other comsubs.

The forms of external function and procedure blocks are

identical with ordinary function and procedure blocks,

whose definitions were described in Section ii. Likewise,

they are invoked in a manner identical with that

described in Section ii.

15,4 BLOCKTEMPLATES

Block templates indicate the properties of compools and

comsubs to the program or comsub referencing them. Their

form is similar to the corresponding compool or comsub.

COMPOOLTEMPLATES

A compool template is identical with its corresponding

compool block except that the opening statement is modified

by the keyword EXTERNAL:

B

!
! /abe/: EXTERNAL COMPOOL;
I

_b_is the name of the corresponding

compool block.

15-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

compool block:

!
i POOL: COMPOOL;

t DECLARE VZERO VECTOR INITIAL(0);

! DECLARE INTEGER DOUBLE, I, J, K;i
! DECLARE CC CHARACTER(10);

I CLOSE POOL;

corresponding template:

!
! POOL: EXTERNAL COMPOOL;

t! DECLARE VZERO VECTOR INITIAL(0);

| DECLARE INTEGER DOUBLE, I, J, K;
t

t CC C aACTER(10);
t CLOSE POOL;

EXTERNAL PROCEDURETEMPLATES

An external procedure template differs from its corresponding

procedure block in the following respects:

I the body of the block is empty except for

declarations describing the attributes of

input and assign parameters;

• the opening statement is modified as shown

below by the keyword EXTERNAL.

llabz_ : EXTERNAL PROCEDURE (ii, _2,...) ASSIGN (_i, _2, ...)

i. _IbeZ is the name of the corresponding

procedure block.

2 il o2 and al,_ 2• , _ ,... ,... are lists of input

and assign parameters respectively, identical

with those in the corresponding procedure

block.

15-9

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Example:

external procedure :

FIXIT: PROCEDURE(INCR) ASSIGN(RESULT);

DECLARE RESULT VECTOR(3),

INCR VECTOR(3);

DECLARE DELTA CONSTANT(I.5E-4);

RESULT = RESULT + DELTA INCR;

CLOSE FIXIT;

corresponding procedure template:

FIXIT: EXTERNAL PROCEDURE (INCR) ASSIGN (RESULT) ;

DECLARE RESULT VECTOR(3),

INCR VECTOR (3) ;

CLOSE FIXIT;

no local data or

executable code.

Sometimes REPLACE statements (see Section 5), and structure

template definitions (see Section 19) are required to fully

define declarations of parameters. It is therefore legal

for these to appear in procedure templates.

15-10

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

EXTERNALFUNCTIONTEMPLATES

An external function template differs from its

corresponding function block in the following respects:

the body of the block is empty except for
declarations describing the attributes of

input parameters;

• the opening statement is modified as shown

below by the keyword EXTERNAL.

i" Zabe_ : EXTERNAL FUNCTION (i1,i2,..,) a_t_cute_ ;

i. _ is the name of the corresponding function
block.

2 i I i2• , ,... is a list of input parameters identical

with those of the corresponding function block.

3. _tt_buZ_ defines type, precision and size attri-

butes, of the corresponding function block.

, _ , , , ,
T I

Example:

ex_ :ernal function :

SWITCH: FUNCTION(ARG) BOOLEAN;

DECLARE ARG SCALAR DOUBLE;

IF ARG<0 THEN RETURN FALSE;

RETURN TRUE;

CLOSE SWITCH;

corresponding function template:

!
SWITCH: EXTERNAL FUNCTION(ARG) BOOLEAN;

DECLARE ARG SCALAR DOUBLE;

CLOSE SWITCH;

Function templates, like procedure templates, may also contain

REPLACE statements and structure template definitions.

"15-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

EXAMPLEOF USE

The example given below is a restatement of the example

used twice in Section 15.1 in terms of actual HAL/S

statements. It shows a program calling an external

procedure, and sharing compool data with it.

program compilation

unit

j DATA: EXTERNAL COMPOOL;

i DECLARE I INTEGER,
S SCALAR,

•I V VECTOR(3) ;

I CLOSE DATA;

external

procedure I

template _k_ SUB: EXTERNAL PROCEDURE (K) ;

i J _. DECLARE K INTEGER;

i i CLOSE SUB;

I
MAIN: PROGRAM;

I READ (5) S,V;

I
CALL SUB (I) ;

I

I
CLOSE MAIN;

I

__.._compool

I / templates

DATA: EXTERNAL COMPOOL; J

DECLARE I INTEGER, II
I

I

I

I invocation I

I and ret_ I

I
I

I
I
I

k_ /datadata references references

S SCALAR,

V VECTOR(3);

CLOSE DATA;

SUB: PROCEDURE (K) ;

DECLARE K INTEGER;

DO CASE K;

V=V S;

V= 0;

DO;

S = S/2;
V=VS;

END;

END ;

CLOSE SUB;

\
I

DATA: COMPOOL; J external

DECLARE I INTEGER_ I procedure

S SCALAR, compilation

V VECTOR(3); unit

CLOSE DATA;

_cocnpool compilation

unit

15-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

16, ADDITIONALDATA INITIALIZATIONFORMS

This Section supplements the discussion in Section 4.3

on initialization by introducing the following topics:

• the implied repeated use of initial lists;

other ways of reducing the length of an initial

list;

• partial initialization of a data item;

• control of the actual occurrence of initialization.

16.1 IMPLIEDINITIALLISTREPETITION

Section 4.3 stated that for single-valued data items, only

one literal value can be supplied in an INITIAL/CONSTANT

specification. It stated that for multi-valued data items,

two alternatives are possible:

The number of literal values specified in the INITIAL/

CONSTANT specification matches the total number of

elements implied by the data declaration;

only one literal value is supplied, in which case

that same initial value is given to all elements

implied by the data declaration.

When a data item is an arrayed vector or matrix, a third

alternative exists. The initial list can consist of a sufficient

number of literal values to satisfy the requirements of one

array element. In this case, every array element of the data

item is initialized to that same set of values. In effect,

the initial list is being used repeatedly during the initializa-

tion process.

16-1

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Example :

Consider the declaration:

!

I DECLARE V ARRAY(4) VECTOR(3)
l

the data item V can be initialized by 12 literal values:

INITIAL (i, 2,3,4,5,6,7,8,9, i0, ii, 12)

whereupon V-- ii

Alternatively, it can be initialized by 1 item:

INITIAL (4)

whereupon V- I I4] [i I[i 1 [i] >

Thirdly, it can be initialized by 3 items, matching

the number of components in each vector:

INITIAL (i, 2,3)

whereupon U-I[il [i] [i] [!]>

16-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

16.2 USE OF REPETITIONFACTORS

If a number of consecutive values in an INITIAL/CONSTANT

specification are identical, they may be replaced by

one value and a repetition factor:

.r .r+l .r+2 or+n
• .._ , • , • ,..._ ,...

.r n#zr+l
0-._ , ,000-,-0

i. In both forms, i represents a literal

value in an INITIAL/CONSTANT specifica-

tion.

2. In the first form i r+l
.r+n

, • are

identical values.

Be The second form shows the replacement of

ir+l .r+n r+l,.... _ by n#Z , where n is

a positive nonzero integer.

Example:

1 DECLARE V VECTOR(6) INITIAL(I,2,2,2,2,3);

may be replaced by

i
i DECLARE V VECTOR(6) INITIAL(I,4#2,3);
i

If a sequence of values is repeated over and over, they may
be treated in a similar way. The sequence is written once,

enclosed in parentheses, and prefaced with a repetition
factor.

Example:

I
! DECLARE S ARRAY(10) INTEGER

! INITIAL(I,2,3,4,5,6,3,4,5,6);
t

may be replaced by:

J
I DECLARE S ARRAY(10) INTEGER
l
, INITIAL(I,2,2# (3,4,5,6)) ;

16-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 681-1840

The factored form may be nested if necessary, and can

be especially convenient in the initialization of

multi-dimensional arrays, or arrays of matrices and vectors.

Example :

t
I DECLARE V ARRAY(3,2,2)

I INITIAL (i, 2,3,2,3, i, 2,3,2,3,1,2) ;

may be replaced by:

i
I DECLARE V ARRAY(3,2,2)

J INITIAL(2#(1,2,3,2,3),1,2);

which may in turn be replaced by:

I

I DECLARE V ARRAY(3,2,2)

I INITIAL(2# (1,2# (2,3)) ,1,2) ;

16,3 PARTIALINITIALIZATION

There are two forms of partial initialization of a data

item. The first is similar to the repetition factor form
of initialization already described.

lo

e

,r ,r+n+l
... • , n#, A ,

i represents a literal value in an

INITIAL/CONSTANT specification.

The form n# states that n elements

are to remain uninitialized, n is

a positive nonzero integer.

16-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Example. •

i

! DECLARE I ARRAY(50) INTEGER
I
! INITIAL (i, 2,3,45#, 0,0) ;

leaves elements of I indexed 4 through 48
uninitialized.

The second kind of partial initialization construct

signals that the remainder of the data item is to be
uninitialized.

INITIAL(i I, i 2, Z n, ,)

CONSTANT (i I .2 int _ 0 .,,.. e *)

•

e

In either form, the asterisk ter-

minating the list signals that the

remainder of the data item is to be

uninitialized.

The number of literal values actually

in the list (or implied by the use of

repetition factors) must be less than

the total number of elements in the

data item.

Example:

I

I DECLARE V ARRAY(2) VECTOR(3)

I INITIAL (i, 2,3,4,*) ;I

results in V-I[i] [!I)

where ? stands for an uninitialized value.

Expressions computable at

compile time may appear in

a list of initial values.

See. Guide/Appendix D.

16--5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

16,4 STATICAND AUTOMATICINITIALIZATION

Although initialization has been discussed at length, the

circumstances under which it actually is effective have not

been considered. In particular, it has not been stated

whether initialization is effective only on the first

entry of execution into a block, or on every such entry.

Q STATIC initialization is initialization effective

only on first entry into a block. It is

called static because generally it results

in the generation of initialized data areas

by a compiler, rather than executable code.

AUTOMATIC initialization is initialization on

every entry into a block. It generally

results in executable code being generated

by a compiler.

The keywords STATIC or AUTOMATIC attached to the declaration

of an initialized data item serve to distinguish between the
two forms.

LEGALUSEOFSPECIFICATION

No STATIC/AUTOMATIC specification may be used in the

declaration of initialized data items in a compool (see

Section 15.2). A COMPOOL block is not executable, so the

question of entry does not arise. Initialization is viewed

as taking place before execution of a program begins.

No data item initialized by the CONSTANT specification may

possess a STATIC/AUTOMATIC specification. Such data items

are viewed as being similar to literals, so that the question

of entry again does not arise.

STATIC/AUTOMATIC specifications can appear, then, in data

declarations in any kind of block except for COMPOOL blocks.

The utility in the case of PROCEDURE, FUNCTION or TASK

blocks is obvious. The utility in the case of PROGRAM blocks

will become clear when the discussion of real time processing

is reviewed in Section (tbd).

16-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

FORMOF STATICSPECIFICATION

In the absence of any explicit indication, static

initialization is assumed. Alternatively, the keyword

STATIC may be used, placed either before or after the

INITIAL specification.

Examples:

I
I
, DECLARE I INTEGER STATIC INITIAL(5),
I
, J INTEGER INITIAL(0) STATIC,

,I K INTEGER INITIAL(l);
!

FORM OF AUTOMATICSPECIFICATION

The keyword AUTOMATIC is used, placed either before or

after the INITIAL specification.

Examples:

DECLARE I INTEGER AUTOMATIC INITIAL(5),

J INTEGER INITIAL(0) AUTOMATIC;

16-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

17, BIT STRINGS

The form and use of Boolean data was discussed at various

points in Part I of the Guide. Their stated purpose was the

manipulation of binary valued (logical) quantities. The

ability to handle strings of binary values is often useful.
In HAL/S, this ability is characteristic of the "bit string"

data type, which is essentially a generalization of the

Boolean data type already described.

17,1 BIT STRINGLITERALS

Boolean literals were described in Section 2. There are

corresponding literal forms for bit string quantities:

BIN'666666'

OCT'O00000'
HEX'hhhh'

DEC'dddd'

i. In the above forms,

•

6 ~ binary digit

0 ~ octal digit

h ~ hexadecimal digit
d ~ decimal digit

The number of binary digits repre-
sented must not exceed 32*.

This number may vary between implementations.

appropriate User's Manual.

See

17-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

BIN'10110'

HEX'FAC2'

OCT'777'

Note that BIN'0' E FALSE E OFF and BIN'1' E TRUE E ON

A second form involving a repeti-

tion factor exists, reducing the

effort of writing strings of

identical digits.

See: Spec./2.3.3.

17-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

17,2 DECLARATIONOF BIT STRINGDATA ITEMS

-_,e _ declaration statement for bit string data items

is shown below:

i.

2.

I
I DECLARE nam£ BIT (n) ;
!

name is any legal identifier.

n specifies the length of the bit

string (i.e. the number of binary

digits in it). It must be in the

range 1 < n < 32*.

Examples:

i

i DECLARE B1 BIT (16) ;I
!

Note that the following two forms are equivalent:

I
i DECLARE B2 BIT(l);I
I DECLARE B2 BOOLEAN;
i

Declarations of bit string data items can be integrated

into compound declarations as described for other data

types in Section 4.2.

* This value may vary between implementations. See

appropriate User's Manual.

17-3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

INITIALIZATION

Initialization of bit string data items follows the

rules given in Section 4.3, using bit string literals
in the list of initial values.

Examples:

I
I DECLARE BI6 BIT(16) INITIAL(HEX'FFFF') ;
I
I DECLARE B1 BIT (I) CONSTANT (TRUE) ;

I DECLARE B ARRAY(2) BIT(3) INITIAL(OCT'7',OCT'5') ;|

Literals are padded or truncated as required to fit
the data item initialized:

I
I
I DECLARE B8 BIT(8) INITIAL(OCT'770');

i DECLARE BII BIT(II) INITIAL(HEX'FF');I

results in

B8 - lllll000 2, BII -- 000111111112

17,3 BIT STRINGSUBSCRIPTING

Subscripting forms for bit string data items are similar

to those for character data items, as described in Section 6.

UNARRAYEDBIT STRINGS

In bit strings, bit positions are indexed left to right

starting from i. In the subscript forms given below,

STRING represents an unarrayed bit string data item of

length L.

17-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

th
To select the _ bit from STRING:

le

STRING

u is an integer expression in the

range 1 < _ < L.

• To select e bits from STRING, starting from the 8th:

i •

•

STRING
uAT 8

is an integer literal value in the

range 1 Z e < L.

8 is an integer expression in the

range 1 Z 8 < L - u + i.

th
• To select a substring startinq with the _ bit of

STRING, and ending with the 8£h:

STRING
TO 8

i. e and 8 are integer literal values in

the range 1 _ (_,8)_ L.

2. 8 > _.

17-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

If 8 is an 8-bit string with B £ ii1011112 then:

B4 - 02

B3 AT 3

B4 TO 5

i01
2

- Ol
2

If a data item is declared to be Boolean, it is really

defined as a 1-bit string. It may therefore possess

component subscripting consistent with the above

rules, even though in this case it performs no useful

purpose.

ARRAYED BIT STRINGS

The subscripting forms for arrayed bit string data items

are as described in Section 6.2. The colon following an

array subscript is mandatory.

Examples :

Let B be a 4-array of 3-bit strings

with B E (1102 , 0102 , 0002 , 1012)

then some forms of array subscripting only are:

B2 : - 0102

B3 TO 4: - (0002 , 1012)

(unarrayed)

(still arrayed)

Some forms of simultaneous array and component

subscripting are:

B 4 - 12:i

B2 AT i: 1 TO 2 -- (ll2, 012)

(unarrayed)

(still arrayed)

17-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

Some forms of component subscripting only are:

= (_, 02, 02, 12)B,: 3 -

Note the mandatory asterisk.

Literal subscripts may

alternatively be expres-

sions computable at

compile time.

Seel Guide/Appendix D,

17,4 BIT STRINGOPERATIONS

Section 7.3 of the Guide outlined the logical operations

which could be performed on Boolean data. Operations

on bit strings are an extension of these. HAL/S recognizes

the following operations:

Symbol Purpose

, }AND

}OR

NOT

ii }CAT

intersection

conjunction

complement

catenation

COMPLEMENT

The complement operation complements the logical value of

every bit in the bit string.

l.

Symbolic form: NOT R

The operand R is a bit string.

17-7

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

If B is an 8-bit string with B E 110001012

then _B E 001110102

CONJUNCTION

The conjunction operation causes the logical values of

corresponding bit positions in the operands to be OR'ed

together.

i.

2.

.

Symbolic form:

The L and R operands are bit strings.

If the operands are of unequal length,

the shorter is padded on the left with

binary zeroes before ORing.

The truth table for each bit position

is as follows:

R
12

02

L

12

12

12

02

12

02

Example:

If B is a 3-bit string with B _ 1002

and BB is a 5-bit string with BB H 101102

then BIBB E 101102

Note that a 5-bit result is obtained.

17-8

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

INTERSECTION

The intersection operation causes the logical values of

corresponding bit positions in the operands to be AND'ed

together.

lo

2.

•

&
Symbolic form: L

AND
R

The t and R operands are bit strings.

If the operands are of unequal length,

the shorter is padded on the left with

binary zeroes before ANDing.

The truth table for each bit position
is as follows:

R
1
2

0
2

L

12 02

12 02

02 02

Example:

If B is a 3-bit string with B E 1002

and BB is a 5-bit string with BB E 10110

then B&BB E 001002

Note that a 5-bit result is obtained•

17-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

CATENATION

The two operands are catenated to form one longer bit

string.

l.

2.

.

Symbolic form: L II R
CAT

The i and R operands are bit strings.

The i operand is catenated to the

left of the R operand.

If the sum of the lengths exceeds

32* the i operand is left truncated

as required.

Example:

If B is a 12-bit string with B - 7E016

and BB is a 24-bit string with BB - 42F50BI6

then B I IBB - E042F50BI6 ,

the left-most 4 bits of B being truncated.

* This value may vary between implementations.

appropriate User's Manual.

See

17-10

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

PRECEDENCE

The following table summarizes the precedence rules for

bit string operations, and is an extension of the table

for Boolean operations given in Section 7.4.

Symbol

, NOT

II, cAT
&, AND

], OR

Precedence

FIRST

i

2

3

4

LAST

Purpose

complement

catenation

intersection

conjunction

Sequences of operations of the same precedence are evaluated

left to right.

Example:

In the following expression, the numbered pointers

show the order of execution of operations:

17-11

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

17,5 BIT STRINGASSIGNMENT

Bit string assignment is an extension of Boolean

assignment as described in Section 8.4.

io

.

o

The operand types are both bit

string:

L-type

BIT STRING

R-type

BIT STRING

The logical value of each bit

position of the R-operand is

transferred to the receiving

data item.

If the operand differs in length

from the receiving data item,

the former is truncated or padded

with binary zeroes on the left as

appropriate.

Examples:

If B is an 8-bit string,

and BB is a 6-bit string with BB _ 1011012 ,

then

I
I B = BIN'1111010110';
I

results in B H 11010110 F

2
and
I
I B = BB;
I

results in B _ 001011012

17-12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

17,6 BIT STRINGSIN CONDITIONALCONSTRUCTS

Execution of the HAL/S IF statement described in Section

9.1, and of the DO WHILE statement described in Section 10.2,

are controlled by the logical value of an expression which

was stated to be either Boolean or relational in type.

Bit string expressions may not be used directly in place

of Boolean expressions. Thl-s-section will explain the

method in which bit strings can be used.

DIRECTUSE OF BIT STRINGS

The only way one can make use of a bit string for a

Boole-_expression is to subscript the bit string down

to one bit, thereby making it a Boolean expression.

Example s :

Let B be a 4-bit string with B_II012

Let BB be a 2-bit string with BB_I02

I IF B THEN X = 0;

I ELSE X = i;
i

The expression B 2 _ 12: since this is logically

true X will be set to zero

I IF BB THEN X = i;
I
I ELSE X = 2;

is illegal since BB has not been subscripted down
to one bit.

E

17-13

INTERMETRICS INCORPORATED. 70"1 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

17-14

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

BIT STRINGSIN RELATIONALEXPRESSIONS

Section 9.2 showed how data items of each type, including

Boolean, could be combined into relational expressions

which evaluated to either TRUE or FALSE. Using the same

nomenclature as that section, bit strings can be used in

Class II comparative operations only:

Symbol

D

NOT =

Purpose

equals

not equals

Class

II

The rules for bit string comparisons are given below:

Symbolic form: L NOT = R

lo The only legal type combination

for the i and R operands is:

L-type I R-type
BIT STRING BIT STRING

R If the operands are of unequal

length, the shorter is padded

on the left with binary zeroes

before comparison.

Examples:

If B is a 4-bit string with B H 11012 ,

and BB is a 3-bit string with BB = 1012 ,

then

B = BIN'01101' is TRUE

and

B = BB is FALSE

17-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The above comparative operations can be combined as

described in Section 9.2, using the given precedence

rules. Note that the important rule that Boolean

and relational expressions cannot be mixed extends to

bit string expressions as well.

Following are some examples clarifying the use of bit
string relations.

Examples:

Let B be a 3-bit string with B E 1102,

and I be an integer with I E 5

r

I IF (B=BIN'00110')&(I>4) THEN I = 0;i

In the above IF statement, both comparative

operations evaluate to TRUE so that the

condition is itself TRUE and the assignment

I= 0;

is executed.

I
! IF (B_=BIN'01')&BIN'II_ THEN I = 0;
I

is illegal because a relational expression is

being mixed with a bit string literal to form the

condition of the IF statement.

Note that

IF B_=BIN'01 ' & BIN'11' THEN I = 0;

is illegal because the syntax is ambiguous. Parentheses

must be used to specify its only legal interpretation:

I IF B_=(BIN'01 , & BIN'11') THEN I = 0;I
i

17-16

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138"(617) 661-1840

17,7 BIT STRINGARGUMENTSAND PARAMETERS

Section ii described procedure and function blocks and

how they were invoked. Procedures and functions may be

defined with bit string parameters, and be passed bit

string arguments.

FORM OF BIT STRINGPARAMETERS

Any input parameter of a function, or any input or

assign parameter of a procedure may be declared to be

of bit string type, using the forms of declaration described

in Section 17.2.

Example:

FLAGS : PROCEDURE (BI) ASSIGN (B2) ;

DECLARE B1 BIT(16),

B2 BIT (8) ;

procedure body

CLOSE FLAGS;

ARGUMENTPASSAGE

An argument of a function or procedure invocation corresponding

to a bit string parameter must conform to the following rules:

17-17

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHI[JSETTS 02138 " (617) 661-1840

INPUT PARAMETER. The transmission of the argument

can be viewed as its assignment to the input

parameter. The following rules apply:

•

•

The corresponding argument must

be of bit string type.

If the input parameter is not of

the same length as the argument,

the latter is truncated or padded

with binary zeroes on the left as

necessary.

These rules apply to both procedures and
functions•

ASSIGN PARAMETER. The following rules apply for

the matching of arguments to bit string

assign parameters.

l.

.

.

The assign argument must be a

declared HAL/S bit string data
item.

The length of the argument must

be the same as that of the para-
meter.

The argument may not possess sub-

scripting.

These rules are only relevant to procedures.

17-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples-.

Let the following data be declared:

!
! DECLARE B1 BIT(16),
I
I B2 BIT (3) ;

and let the following procedure be defined:

SWITCHES : PROCEDURE (D2) AS SIGN (DI) ;

DECLARE D1 BIT(3),

D2 BIT(8) ;

procedure body

CLOSE SWITCHES;

Both legal and illegal invocations of this procedure are
shown below:

l

I CALL SWITCHES(BIIBIN'I001') ASSIGN(B2); i E
I i

_this 16-bit quantity truncated

to 8 bits on passage

I

I CALL SWITCHES(B2) ASSIGN(B1);

! _ _illegal - length mismatch

--this 3-bit quantity padded to 8

I bits on passage

I

I CALL SWITCHES(BIN'1') ASSIGN(F_SE);

illegal - not a declared

bit string data item.

17-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

17,8 BITSTRINGFUNCTIONS

In Section 11.2 it was stated that functions of any legal

HAL/S type could be created. Accordingly, it is legal to

define functions of bit string type.

BLOCKDEFINITION

The opening statement of the function block takes the form:

iabz£: FUNCTION(Z l, i2,...) BIT(n);

i. _ib6£ is the name of the function.

•1 .2
2. • , _ ,... is the list of input

parameters.

Q n indicates the number of bits, and

lies in the range 1 < n < 32*.

The closing statement is as described in Section 11.2.

Example:

FI: FUNCTION(B) BIT(5) ;

CLOSE FI;

function body

* This value may vary between implementations. See
appropriate User's Manual.

17-20
INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

RETURNOF BIT STRINGQUANTITIES

The RETURN statement of a bit string function follows the

general function return form described in Section 11.6. The

return is similar in nature to the transmission of input

arguments of bit string type, the function itself playing
the role of parameter. The relevant rules are the same as

those described for argument passage in Section 17.7.

Examples:

S

FI: FUNCTION(B) BIT(3);

DECLARE B BIT(8) ;

RETURN B;

RETURN B ;
4

RETURN 5.7E3;

CLOSE F1;

truncation of 5 left-most

bits occurs

result padded to 3 bits

illegal - bit string quantity
not returned

17,9 BIT STRINGSIN INPUT/OUTPUT

Bit strings may participate in input/output in the same

way as other data types, as described in Section 12. The

format of bit string data fields for input and output are
described in Appendix F .

E

17-21

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

18, MULTI-DIMENSIONALARRAYS

Section 4.1 stated that it was possible to declare an

array or table of any given data type. Section 4.2 showed

the form of declaration for 1-dimensional arrays. HAL/S

actually supports arrays of multiple dimensions.

First, the general form of declaration is presented. Then,

some remarks on the order of initialization preceed_a

discussion of the subscripting of multi-dimensional arrays.

1E

18,1 DECLARATION

To declare an array of any data type and of any legal

dimension, the following form of declaration is used:

i.

2.

.

I 1 2
I DECLARE n_m¢ ARRAY(n , n ,...) _tt_/bu_t_;
I

name is the name of the data item declared

bu;t are the attributes appropriate

to the data type being declared.

n_, i = _, 2... are the sizes corresponding

to each array dimension. The upper limit

on i is 3". The number of elements in

any dimension must lie in the range
1 < ni < 32768**.

The limiting number of dimensions may vary between

implementations: See appropriate User's Manual.

This value may vary between implementations. See the

appropriate User's Manual. In some implementations, there

may also be restrictions upon the contexts in which

very large arrays may be used.

18_i

INTERMETRICSINCORPORATED.701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Examples :

DECLARE S ARRAY(5,5) INTEGER,

V ARRAY(4) VECTOR(6),

W ARRAY(2,2,1000) SCALAR;

18,2 ORDER OF INITIALIZATION

Section 4.3 stated the order of initialization of elements

of 1-dimensional arrays of any data type. The order for

multi-dimensional arrays is generated by the rules given

in Appendix C.

The following examples illustrate the effect of these

rules in the initialization of 2- and 3-dimensional

arrays.

Example:

DECLARE I ARRAY(2,3) INTEGER INITIAL(I,2,3,4,5w6);

results in I- (1 23)5

I
I DECLARE J ARRAY(2,3,4) INTEGER

i INITIAL(I,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,I
! 19,20,21,22,23,24);

results in

j -_
li 2 3 4 13 14 15 16

\

6 7 8 17 18 19 20)i0 ii 12 21 22 23 24

18-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

18,3 SUBSCRIPTING

Section 6.2 gave the forms of array subscripting for

1-dimensional arrays. To summarize, the following kinds

of subscript could be used:

• simple indexing, to select one array element;

• AT-partitioning, to select a sub-array of a

given size starting from a given index value;

TO-partitioning, to select a sub-array starting

from one given index value and ending on a
second.

In multi-dimensional arrays, such subscripting can be

applied to each dimension of the array.

ARRAYSUBSCRIPTINGONLY

Let TABLE be an n-dLmensional array,
form is then:

The general subscripting

TABLEcuI_(tl _y2 cuL_u3n@.,,0

I. _ stands for any array subscript

of the form given in Section 6.2.

2. The colon is optional for integer

and scalar data types only.

3. Any _y may be replaced by an

asterisk to denote specification of

every element in that dimension.

Examples:

If I is a 2 x 3 array of integers

with I 5 (I 2_>5

then

I1, 2 _ 2

I2,1 TO 2 _ (4 5)

18-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I -- (3 6)
*,3

i*'*: 5

note redundant colon

ARRAYANDCOMPONENTSUBSCRIPTING

If TABLE represents an n-dimensional array of vector,

matrix, character or bit string type, then the general

form when component and array subscripting is present

is:

TABLE array I, array 2,...a_gn : component

i. _V_gu_y stands for any array subscript

of the form given in Section 6.2.

o component represents any form of com-

ponent subsc_ipting legal for the data

type of TABLE, as described in Section

6.1 and 17.3.

3. Any _Aay may be replaced by an asterisk

to denote specification of every element
in that dimension.

Examples:

If C is a 2 x 3 array of characters

with C E /IALPHA' 'BETA'
k DELTA' 'EPSILON'

then

C1,2: E 'BETA'

C 1 = 'BET',2: 1 TO 3 -

= ('M' 'A')
C.,3:4 -

'GAMMA ')'ZETA '

note mandatory colon

18-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

COMPONENTSUBSCRIPTINGONLY

When only component subscripting is required, array

subscripting cannot be totally omitted, but must rather

be replaced with asterisks. If, as before, TABLE

represents an n-dimensional array of vector, matrix,

character or bit string type, then the general form is:

io

•

TABLE
,, , : componea;t

n asterisks correspond to n dimensions

of absent array subscripting.

componzn;t represents any form of component

subscripting legal for the data type of

TABLE.

Example:

If C is a 2 x 3 array of characters

withc _ (:_P_' 'BETA' 'G_'_
\ DELTA' 'EPSILON' 'ZETA' J

then

C, ,: 1 - ('A' 'B' 'G'_

' \'D' 'E' 'Z']

Literal subscripts may

alternatively be expres-

sions computable at

compile time.

See: Guide/Appendix D.

For a complete descrip-

tion of all subscript

forms see Spec./5.3.

18-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

19, STRUCTURES

Section 4.1 of the Guide introduced some of the types

of data definable in the HAL/S language. It further

made reference to the fact that "hierarchical organizations

of data items" exist in the language. It is the purpose

of this Section to describe the form and use of these

so-called "structures" data.

The HAL/S array feature is a useful construct for forming

aggregates of data items, if they are homogeneous in

attributes. Frequently, however, it is of great convenience

to be able to form aggregates of data items with heterogeneous

attributes. In addition, requirements may exist to reference

not only the aggregate as an entity, but also subsets

of it, or subsets of subsets of it. The HAL/S STRUCTURE

data type fulfills both of these requirements.

19,1 HAL/S STRUCTURECONCEPTS

HAL/S data structures have two characteristic properties:

• Data items or arrays of almost any type can be

combined to form a structure.

• The data items can be organized into a tree-like

hierarchy (similar in concept to a genealogical

tree, for example).

19-1

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The following diagram illustrates in concept the form of

a typical structure tree.

START S TOP

t
\

t
÷ level 0

÷ level I

\
I ÷

level 2

"branch"

÷ level 3

÷ level 4

19-2

INTERMETRICS INCORPORATED "701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The tree consists of nodes connected by "branches".

Every "leaf" node of the tree corresponds to one of

the actual data items making up the aggregate. The

whole tree can be referenced by using the name of the

"root" node. Subsets of the tree can be referenced

by using the name of the appropriate "fork" node. The

dotted line is a "tree walk" which forms the basis for

converting this tree representation into a linear list

representation which the HAL/S language itself has to use.

The conversion consists of recording the name of each

node (root, fork or leaf) and its level when the tree walk

passes it in the direction shown by the arrow at ,.

Example:

k
÷al, _ ÷ level 0

_ oa

/
ib

b c %+ ¢ ÷ ÷ level I 1 c
k
..I 2d

2 e
d e

÷ I ! l ÷ level 2

tree representation linear representation

19-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The reverse conversion consists of the following steps.

First draw the "root" node appearing at the top of the list.

Then, treat each of the remaining nodes in order as follows.

Draw the node to the right of previous node with

the same level number (if any),and under nodes
with smaller level numbers.

• Connect it by a "branch" to the last-connected

node with a level number one smaller.

Example:

a a a ÷ level 0
On

1 b b b b b +" level I

2 d "<'-lev_ 2

2 z

In the HAL/S language, the specification of a structure tree

organization is separated from the declaration of the structure

or structures possessing that organization.

STRUCTURE TEMPLATES are used to specify structure

tree organizations in a linear list representation.

A structure template specifies all nodes in a tree
from level 1 downwards.

STRUCTURE DECLARATIONS are used to declare structures

possessing pre-defined templates. For reasons which

will become apparent when the referencing of structures

is considered, the declared name of the structure is

assigned as the "root" node name of the tree organiza-
tion.

In the remainder of the section, structures will be referred

to as data items, since even though they are aggregates of

data items, they can be manipulated as entities in themselves.

19-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS n2138 • 1617) 661-1840

19,2 STRUCTURETEMPLATES

The structure template is the HAL/S construct which defines

the structure tree organization in the form of a linear

list. It defines by name and level all "fork" and "leaf"
nodes in a tree from level 1 dov_wards.

In the HAL/S implementation of structure trees, the following
nomenclature is used.

TEMPLATE NAMES are names identifying structure

templates. They appear as part of the template

specification, and also in structure declarations.

• MINOR STRUCTURE NODES are the "fork" nodes of a

structure template.

STRUCTURE TERMINALS are the "leaf" nodes of a

structure template. Every structure terminal

is one of the data items comprising the structure

aggregate.

GENERAL FORM OF A TEMPLATE

The form of a structure template consists of its name followed

by a specification of all its minor structure and structure

terminal nodes.

• OVERALL FORM

The overall form is as follows=

i.

.

STRUCTURE nam£ :

node I, node 2,

;

name is the structure template name,

and is any legal HAL/S identifier name.

node I, node2,...node n is a list of nodes

forming the tree organization.

19-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

MINOR STRUCTURE NODES

The form of a minor structure node of a template

is as follows:

l.

2.

n name

n is the level number of the node•

name is the name of the minor structure

node, and may be any legal identifier

n ame.

STRUCTURE TERMINAL NODES

The form of a structure terminal node of a

template is as follows:

i.

2.

.

•

n name _butes

n is the level number of the node.

name is the name of the structure

terminal node, and may be any legal

identifier name.

at2Ju_bu_t_ consists of array, type, size

and other attributes applicable to data

items.

The following data types are legal as

structure terminals:

INTEGER BOOLEAN

SCALAR BIT STRING

VECTOR CHARACTER

MATRIX STRUCTURE

19-6

INTERMETRICS INCORPORATED •701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Note that in the case of a scalar structure terminal

no attributes need appear*. However, there is no confusion

as to whether the node is a structure terminal or a minor

structure since the level number sequence is sufficient

to distinguish the two cases. Structure terminals of

structure type are a special case which is discussed later.

RESTRICTIONS

The attributes attached to the specification of a structure

terminal node are written in the same form and order as in a

declaration statement (as described in Section 4 and expanded

in Sections 16, 17.2, and 18.1). The following restrictions

are however made.

No INITIAL/CONSTANT specification can be applied

to a structure terminal.

• No STATIC/AUTOMATIC specification can be applied

to a structure terminal.

Example:

STRUCTURE Q:

1 QT CHARACTER(80),

1 QNI,

2 QI INTEGER,

2 QV VECTOR(3) DOUBLE,

2 QS ARRAY(100) SCALAR,

1 QN2,

2 QM MATRIX(3,3);

2 QB BOOLEAN;

See the comment on the declaration of scalar data items in

Section 4.

19-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The above structure template corresponds to the following

tree organization:

÷ level I

÷ level 2

LOCATIONOF STRUCTURETEMPLATES

Structure templates are essentially parts of data declarations

and therefore must appear before the first executable state-

ment of the program or other block in which they are coded.

19-8

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

19,3 STRUCTUREDECLARATIONS

Structure declarations are used to declare structure data

with a tree organization defined by a pre-existing structure

template. Structure declarations are in the same general

form as declarations of other kinds of data items, as
described in Section 4.

BASICFORMOF DECLARATION

The basic form of structure declaration is shown below:

i.

o

DECLARE name s-STRUCTURE;

namz is the name of the structure data

item, and may be any legal identifier

name.

e is the name given to a pre-existing

structure template which specifies the

tree organization of the structure being
declared.

Note that the structure template referenced by a structure

declaration must have been defined previously in the same

block, or have been declared in a block enclosing the

block containing the declaration.

Examples:

form of declaration -

STRUCTURE Q:

1 QA SCALAR,

1 QB CHARACTER(80),

1 QC BOOLEAN;

DECLARE ZZl Q-STRUCTURE;

DECLARE ZZ2 Q-STRUCTURE;

19-9

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

legal and illegal placing of templates -

outer

program

block

inner

procedure_

block

I !
DECLARE A TI-STRUCTURE;

DECLARE B T2-STRUCTURE;

DECLARE C T3-STRUCTURE;

/template T1

template T2

.,---legal

--illegal - T3

not pre-defined

_template T3

Structure declarations can be integrated into compound

declarations of the kind described in Section 4.2.

Example:

DECLARE A SCALAR,

B Q-STRUCTURE,

C CHARACTER(80) ;

19-10

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

MULTIPLE COPYSTRUCTURES

Structures can be declared to have multiple copies of

the data specified by the tree organization. Although

the form of specification is different from HAL/S arrays,

they can in some contexts be viewed as arrays of structures.

The data declaration for a multiple-copy structure takes

the following modified form:

DECLARE name s-STRUCTURE(n);

i. name is the name of the structure.

2. _ is the name of the predefined structure

template.

3. n is the number of copies of the data

required. It must lie in the range
1 < n < 32768*.

* This value may vary between implementations.

appropriate User's Manual.

See

19-11

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

INITIALIZATIONOF STRUCTURES

Structures are initialized by supplying an INITIAL/CONSTANT

specification with the structure declaration, rather than

with the template• The specification is added to the

declaration as described in Section 4.3.

Example:

STRUCTURE Q:

1 QI INTEGER,

1 QS SCALAR;

DECLARE Z Q-STRUCTURE INITIAL(5,4.3);

The order of initialization for structures is as follows.

SINGLE-COPY STRUCTURES. The number of literal

values in the initial list (or implied by the use

of repetition factors) must equal the total number
of elements summed over all the structure terminal

nodes• Each structure terminal is initialized

in the order it appears in the structure template,

according to the rules given in Section 4.3 and

further expanded in Sections 16 and 18.2.

MULTIPLE-COPY STRUCTURES. The number of literal

values in the initial list may either match the

total number of elements summed over all copies, or

match the number in one copy, in which case all copies

are identically initialized• Each copy is initialized

in turn in order of increasing index, according to the

rules for single-copy structures•

These ordering rules are a restatement of those given in

Appendix C.

Example:

STRUCTURE Q;

1 QV VECTOR(3),

1 QM,

2 QI INTEGER,

2 QC CHARACTER (80) ;

DECLARE Zl Q-STRUCTURE INITIAL(I.5,2.5,3,5,-2, 'ALPHA') ;

DECLARE Z2 Q-STRUCTURE(2) INITIAL(4.5,5.5,6.5,-4,'BETA') ;
'GAMMA 'DECLARE Z3 Q-STRUCTURE (2) INITIAL (3#1.5, I,

3#2.5,2, 'DELTA') ;

19_12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The above declarations result in initialization as follows:

Zl

Qv ---

QM

Z2

both copies

identically

initialized

QI H -4 QC = 'BETA'

Z3

QV -

QI E 2 QC H 'DELTA'

19-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSE_'TS 02138 • (617) 661-1840

The supplementary initialization forms described in

Section 16 are fully applicable to structure data types.

19,4 NESTEDSTRUCTURES

Section 19.2 stated that structure terminal nodes could

themselves be of structure type. The effect of this is to

nest a second template into the first, thus expanding the
tree organization of the former.

Example:

STRUCTURE A:

1 AI INTEGER,

1 AI,

2 AC CHARACTER(80),

2 AB BOOLEAN;

STRUCTURE B:

1 BS SCALAR,

1 BI,

2 BV VECTOR(3),

2 BA A-STRUCTURE;

In a tree representation, this is expressible as:

El

E I A
. AC

% •

19-14

÷ level I

+ level 2

+ level 3

÷ level 4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The structure template B is in many aspects like a

template C given by:

STRUCTURE C:

1 BS SCALAR,

1 B1,

2 BV VECTOR(3),

2 BA,

3 AI INTEGER,

3 AI,

4 AC CHARACTER(80),

4 AB BOOLEAN;

which has superficially the same tree organization.

19-15

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

RESTRICTION

A structure terminal of structure type may not possess

multiple copies.

Example:

The following template is ille@al:

I
I STRUCTURE Q:
i
! 1 QI INTEGER,

I 1 QS T-STRUCTURE(20) ;

19,5 QUALIFICATIONAND STRUCTUREREFERENCING

The basic types of data item introduced in Section 4 are

referenced merely by stating their names in the desired

context. A structure in its entiret[can be referred to

in the same way. Referring to part of a structure is more

complex, however, because in general more than one structure

may possess the tree organization expressed by a particular

template.

THE QUALIFIEDREFERENCECONCEPT

Any node of a structure other than the "root" node is referred

to by a composite or "qualified" name which is generated

conceptually in the following way. Consider the tree

organization:

%

\

to be referenced

19-16

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

A tree walk is started at the "root" node, and continued

down to the node to be referenced. The names of all the

nodes traversed, including the "root" and final nodes, are

listed. The resulting composite or "qualified" name is

an unambiguous reference to the desired "leaf" node (given

certain restrictions on duplicate naming which are to be

described)•

REFERENCINGSTRUCTURETERMINALS

The qualified name of a structure terminal is generated

by catenating the names of all nodes between the "root"

node and the desired "leaf" node of the tree organization.

name_ name_ nam_

i. name I is the name of the structure as

declared•

2• name n is the name of the structure

terminal to be referenced•

3• name 2, name n-I are the names of

intervening minor structure nodes,

if any.

Examples:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER (80) ;

DECLARE ZQ Q-STRUCTURE;

19-17

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661_1840

To reference QI and QC in ZQ, the following tree

walks are required:

QI

Q1

!

Qs Qc

They generate the following names respectively:

ZQ. QI 0

ZQ. QI. QC

REFERENCINGMINOR STRUCTURE NODES

If it is required to perform an operation on a sub-tree

of a structure (i.e. all parts of the tree beneath a certain

"fork" node), the occasion arises to refer to a minor structure

node name. The qualified name is generated by catenating the
names of nodes between the "root" node and the desired "fork"

node.

19-18

INTERMETRICSINCORPORATED-701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

n_me_ _me_ . . . name n

i. name I is the name of the structure

as declared.

2. namen is the name of the minor structure

node to be referenced.

3. name2,...n0m_ -I are the names of inter-

vening minor structure nodes, if any.

Example:

STRUCTURE Q_

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80);

DECLARE ZQ Q-STRUCTURE;

To reference Q1 in ZQ, the following tree walk is required:

QI Q1

Qs Qc

It generates the following name:

ZQ.QI _. ®

19-19

INTERMETRICSINCORPORATED.701CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

NAMINGUNIQUENESS

The node names used in a structure tree specification need

only be unique in so far as all tree walks used to generate

qualified names must be distinguishable• This means that

some node names may actually duplicate others without error•

Examples:

STRUCTURE Q:

1 Q1,

2 QS SCALAR,_

1 Q2GS legal2 SCALAR; _'---

DECLARE ZQ Q-STRUCTURE;

duplicate names

The above duplicate names are legal because qualified

references to each are distinguishable:

ZQ.QI.QS

ZQ.Q2.QS

STRUCTURE R:

1 RI, -_

2 RS SCALAR, / illegal duplicate names
1 R1 CHARACTER(80);

DECLARE ZR R-STRUCTURE;

The above duplicate names are illegal• ZR.RI might be

referring to a minor structure node or a structure terminal

of character type.

The following situationsare also permitted:

The name of minor structure or terminal node may

duplicate the name of any minor structure or terminal

node in a different struc£ure template.

• The name of a minor struc£ure or terminal node may

duplicate the name of any ordinary data item.

19-20

INTERMETRICSINCORPORATED.701 CONCORD AVENUE.CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

UNQUALIFIEDREFERENCES

Qualified referencing of parts of structures can become

laborious if the node names assigned are long, or there

are many levels in the structure• By accepting certain

restrictions, unqualified, or direct naming of minor

structure or terminal nodes is permissible.

To be able to refer to a structure in an unqualified manner

the following must apply:

Unqualified reference may

only be made to a structure

whose name is the same as

the template definl_--its

tree organization•

It follows that only one unqualified structure may be

declared for any template•

Examples:

STRUCTURE Q :

1 QI INTEGER,

1 QI,

2 Qs SCALAR,

2 QC CHARACTER (80) ;

DECLARE ZQ Q-STRUCTURE;

DECLARE Q Q-STRUCTURE;

QC in ZQ must be referred to as

ZQ.QI .QC

QC in Q may be referred to simply as:

QC

19-21

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

More restrictive rules apply to the construction of a

structure template used to declare an unqualified structure.

The name of each node in the template must be

unique to the block in which the template is
defined.

• The template must be defined in the same block

as the unqualified structure is itself declared.

• The template may contain no structure terminals

of structure type (i.e. nested structures).

19,6 SUBSCRIPTINGIN STRUCTURES

A structure terminal may possess "terminal" subscripts

as a result of its type (vector, matrix, character, bit

string) or its array property. In addition, any reference

to the whole or part ot a structure with multiple copies

can introduce a level of "structure" subscripting.

The discussion on subscripting is divided into two

parts:

• subscripting on references to the entire structure

or to minor structure nodes;

• subscripting on references to terminal data items.

SUBSCRIPTINGOF STRUCTUREDATA ITEMS

A reference to an entire structure or to one of its minor

structure nodes may only possess subscripting if the

structure is declared to possess multiple copies.

In the subscripting forms below, TREE represents any data
item of structure type (i.e. either a "root" or "fork" node

of the structure tree), the reference being unqualified or

qualified. It is assumed that the entire structure is

declared to possess L copies.

19-22

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

• To select the eth copy from TREE:

lo

o

TREE

is an integer expression in the

range 1 _< u _< L.

The semicolon is optional.

• To select a subset of _ copies starting from
the 8th copy of TREE:

lo

.

TREE
AT 8;

is an integer literal value in the

range 1 _< e _< L.

8 is an integer expression in the

range 1 _< 8 _< L- e + i.

3. The semicolon is optional.

To select a subset of copies starting from the

eth copy and ending with the 8 th copy of TREE:

i.

.

3.

TREE
TO 8;

e, 8 are integer literal values in th_

range 1 Z(u, 8)_ L.

The semicolon is optional.

19-23

INTERMETRICSINCORPORATED.701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS02138. (617) 661-1840

Examples:

Given

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80) ;

DECLARE ZQ Q-STRUCTURE (3) ;

with the following values:

ZQ

Q1 Q1

QI - 1 QI -= 2 QI- 3

Q1

QS - 1.5 QC -- 'A' Qs = 2.5 Qc -- 'B' Qs -= 3.5 Qc -= 'c'

then ZQ2; selects copy 2 with values:

ZQ

Q1

Qs -- 2.5 Qc -- 'B'

19-24

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

ZQ'QII TO 2; selects copies 1 and 2 of the sub-tree

under Q1

Qs - 2.5 Qc = 'B'

ZQ.QI 3 selects | E

1

Qs -= 3.5 Qc -- 'c'

Note the omission of the semicolon.

19-25

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

SUBSCRIPTINGOF STRUCTURETERMINALS

If a structure terminal is part of a single copy structure,

then it can only possess subscripting by virtue of its type

or array property. Such subscripting is the same as for

ordinary data items, and has been described in Sections 6,

17.3, and 18.3.

If, on the other hand, a structure terminal is part of a

multiple copy structure then it may possess subscripting

by virtue of its type or array property, and by virtue of

the multiple copy property• Three cases of subscripting

thus arise:

STRUCTURE SUBSCRIPTING ONLY. The form of

subscripting is the same as for structure data

items, as described above. The only difference

is that the terminating semicolon is optional

only if the structure terminal is of integer

or scalar type, and unarrayed.

STRUCTURE AND TERMINAL SUBSCRIPTING. The structure

subscripting takes the same form as before.

Terminal subscripting (consequent on type or

arrayness) follows the mandatory semicolon, and
takes the forms described in Sections 6, 17.3 and

18.3.

TERMINAL SUBSCRIPTING ONLY. The subscript forms

are the same as in the previous case except that

the structure subscript is replaced by an asterisk.

Examples_

Given

STRUCTURE Q :

1 QV VECTOR(3),

1 QI,

2 QB ARRAY(2) BIT (4),

2 QM MATRIX(3,3) ;

DECLARE ZQ Q-STRUCTURE;

19-26

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

with the following values:

ZQ

- 5

8

QB _= (11002 10112)

then

ZQ.QV 1 _ 1

ZQ.QI.QB,: 3 _ (02 12)

and ZQ.QI. TO 3, 2 TO 3 -

Further, given
i
i
I DECLARE YQ Q-STRUCTURE (3) ;
f

with the following values:

_v --- Q1 _v E Q1

= 5 - 5

8 2

QB -= (10012 llll 2) QB ---(ll012 10112)

- 2

5

QB --- (10012 01102)

19-27

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

then

YQ.QV
,;3

- (3 6 9) result is scalar type

\
[copy 2)

yQ.QI.QB 2 - (112 10 2);*:i TO 2

Larray property unmodified

YQ.QI.QM2;3,3 -= 1

Literal subscripts may

alternatively be expres-

sions computable at

compile time.

See: Guide/Appendix D.

19,7 TREE EQUIVALENCEOF STRUCTURES

Most operations involving more than one operand of structure

type require their operands to possess tree organizations

which are in most respects identical. Two structures which

are compatible in this sense are said to be "tree-equivalent".

Two basic requirements have to be satisfied to establish

tree-equivalence:

• the actual shape of the trees must be equivalent;

• the attributes of corresponding structure terminal

nodes must be the same.

EQUIVALENCEOF TREE SHAPE

The equivalence of tree shape can be achieved in a number

of different ways:

USE OF SAME TEMPLATE - If two structures are

declared using the same template, they cannot

avoid meeting both requirements for tree-equivalence.

19-28

INTERMETRICSINCORPORATED-701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Example:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80);

DECLARE ZQI Q-STRUCTURE,

ZQ2 Q-STRUCTURE(20);

ZQI and ZQ2 are tree-equivalent, (notwithstanding

the mismatch in number of copies).

USE OF TEMPLATE OF SAME SHAPE - If two structures are

declared using distinct templates which do, however, have

the same shape, then the first requirement of tree-equivalence
is met.

Example:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80);

DECLARE ZQ Q-STRUCTURE;

STRUCTURE R:

1 RI INTEGER,

1 RI,

2 RS SCALAR,

2 RC CHARACTER (80) ;

DECLARE ZR R-STRUCTURE;

The tree shapes of ZR and ZQ are the same:

QI Q1 RI

Qs Qc

ZR

RS

R1

19-29

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1840

MATCHING OF SUB-TREES - If the tree shape of a sub-tree

of one structure matches the same of another structure,

or sub-tree thereof, then the first requirement of tree-

equivalence is met.

Example :

STRUCTURE Q :

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER (80) ;

DECLARE ZQ Q-STRUCTURE;

STRUCTURE R:

1 RS SCALAR,

1 RC CHARACTER(80) ;

DECLARE ZR R-STRUCTURE;

The tree shapes of ZQ and ZR clearly are not the

same. However, the tree shapes of ZQ.QI and ZR

are the same:

Qs

Q1

Qc RS

ZR

RC

19-30

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MATCHINGOF TERMINALNODEATTRIBUTES

Once matching of tree shape has been established, to

obtain tree-equivalence, corresponding structure terminal

nodes of each tree must be verified as having identical

attributes. Generally, terminal nodes must match exactly

in their type and array property (if any). Additionally,

for each type the following matching requirements must
be met:

TYPE MATCHING REQUIREMENTS

BIT STRING

CHARACTER

number of bits

(BOOLEAN is equivalent to BIT(I))

maximum declared length

INTEGER

SCALAR

VECTOR

MATRIX

STRUCTURE

precision

precision

precision, length

precision, row and column dimen-
sions

specified structure template

Examples:

STRUCTURE Q :

1 QI INTEGER,

1 QI,

2 QM MATRIX(3,3),

2 QC CHARACTER(80) ;

DECLARE ZQ Q-STRUCTURE;

STRUCTURE R:

1 RI INTEGER DOUBLE,

1 RI,

2 RM MATRIX (3,3) ,

2 RC CHARACTER(80) ;

DECLARE ZR R-STRUCTURE;

19-31

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ZQ fails to be tree-equivalent to ZR solely due to

one precision mismatch: ZQ.QI is single precision,

while ZR.RI is double precision.

However, ZQ.QI is completely tree-equivalent to

ZR.RI since the offending terminal node is not

present.

Note that the matching requirement for terminal nodes of

structure type preclude tree-equivalence in cases typified

by the following example:

Example:

STRUCTURE Q :

1 QS SCALAR,

1 QC CHARACTER(80) ;

STRUCTURE R:

1 RI INTEGER,

1 RQ Q-STRUCTURE;

DECLARE ZR R-STRUCTURE;

STRUCTURE S :

1 SI INTEGER,

1 SI,

2 SS SCALAR,

2 SC CHARACTER(80) ;

DECLARE ZS S-STRUCTURE;

ZS is not tree-equivalent to ZR although their tree

organiza---tions are superficially alike (see Section 19.4).

ZS would be tree-equivalent to ZR only if the template S

had been specified as:

STRUCTURE S:

1 SI INTEGER,

1 SQ Q-STRUCTURE;

Where structure templates are
declared with additional

attributes such as RIGID,

DENSE, LOCK, etc., matching

extends to these also.

See Spec./4.3 and 4.5.

19-32

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

19,8 STRUCTUREASSIGNMENTS

Values of one structure data item* may be transferred to

another in a body using a structure assignment. Structure

assignments have the same general form as other assignments:

this form has been described in Section 8.1.

BASICFORM

As applied to structures, the rules become:

e

•

Symbolic form: L = R;

L is the receiving structure data

item. It may possess structure

subscripting.

R is either a second structure data

item, subscripted or not, or alternatively
a structure function (see Section

19.11).

L, R must be tree-equivalent in the

sense described in Section 19.7.

Unless specifically stated in Sections 19.8 through 19.12,

a structure data item may either be a declared structure,
or a minor structure node.

19-33

INTERMETRtCSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS02138. (617) 661-1840

Examples:

Given:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80) ;

DECLARE ZQI Q-STRUCTURE;

DECLARE ZQ2 Q-STRUCTURE(2);

where ZQ2 has the values:

ZQ2

Q1 Q1

QI - 2

Qs - 4.5 Qc -- 'A' Qs -= 2.5 Qc --- 'B'

then

I
I
i ZQI = ZQ2 ;

Is 2
I'

results in ZQI having the values:

ZQI

QI- 2

Qs - 2.5 Qc - 'B'

19-34

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

and if then the following is executed

!
I ZQI Q1 = ZQ2 Q1 ;
| " ,

|S 1
I

the values of ZQI are modified to:

ZQI

QI = 2

Q1

QS-- 4.5 QC -- 'A'

MULTIPLEASSIGNMENTS

Several structure data items may be assigned values at one

assignment by the following construction first presented in

Section 8.5:

io

o

.

Symbolic form:

LI, L 2, L 3, Ln = R;

L1 Ln,,.. are receiving structure data
items.

Any t must be tree-equivalent to the

R structure operand.

No particular order of assignment is
as sumed.

19-35

INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Examples :

Given:

STRUCTURE Q:

1 QI INTEGER,

1 QS SCALAR;

DECLARE Q-STRUCTURE, ZQI, ZQ2, ZQ3;

then

i
I ZQI, ZQ2 = ZQ3;I
I

assigns the values of ZQ3 to ZQI and ZQ2.

19,9 STRUCTURESIN CONDITIONALCONSTRUCTS

Relational expressions appear in the IF statement described in
Section 9.1 and the DO WHILE statement described in Section

10.2. Such expressions may contain comparative operations

with structure operands.

Using the same nomenclature as in Section 9.2, structures can

be used in Class II comparative operations only:

Symbol Purpose Class
.,.

n

NOT =

equals

not equals

II

19-36

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

/

The rules for structure comparisons are:

•

•

3.

Symbolic form: L NOT = R

The t and R operands are either structure

data items or structure functions (see

Section 19.11).

The operands must be tree-equivalent.

Two structures are equal if, and only if,

all corresponding terminals have equal
values•

Example:

Given:

STRUCTURE Q:

1 QI INTEGER,

1 QS SCALAR;

DECLARE ZQI Q-STRUCTURE,

ZQ2 Q-STRUCTURE;

with values of ZQI and ZQ2 given by

ZQI ZQ2

QI _ 1 Qs ---0.5 QI = 1 QS -- 0.5

the** ZQI = ZQ2 is TRUE.

19-37

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

19,10 STRUCTUREARGUMENTSAND PARAMETERS

HAL/S procedures and functions may be defined with structure

parameters, and be passed structure arguments.

FORMOF STRUCTUREPARAMETERS

Any parameter of a function, or any input or assign parameter

of a procedure, may be declared to be a structure using the
forms of declaration described in Section 19.3.

Example:

ANALYZE: PROCEDURE(S1) ASSIGN(S2);

STRUCTURE S:

1 SI INTEGER,

1 SN,

2 SS SCALAR,

2 SC CHARACTER(80);

DECLARE Sl S-STRUCTURE,

$2 S-STRUCTURE;

CLOSE ANALYZE;

executable code

Observe the position of the structure template.

ARGUMENTPASSAGE

Any argument of a function or procedure invocation corresponding

to a structure parameter must conform to the following rules:

19-38

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

INPUT PARAMETER. The transmission of the argument

can be viewed as its assignment to the input para-

meter. The following rules apply:

io

•

The corresponding argument must
be a struc£ure data item or a

structure function.

The argument and parameter must

be'tree-equivalent.

These rules apply to both procedures and functions.

• ASSIGN PARAMETER. The following rules apply for

matching of arguments to structure assign parameters.

l.

.

•

The assign argument must be a

structure data item.

The argument and parameter must

be tree-equivalent.

The argument may only be sub-

scripted if it is a declared

structure as opposed to a minor

structure, and only then if the

subscript reduces the number of

copies to one.

These rules are only relevant to procedures.

19-39

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples:

Let the following be declared:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER(80);

STRUCTURE R:

1 RS SCALAR,

1 RC CHARACTER(80);

DECLARE ZQ Q-STRUCTURE,

ZR R-STRUCTURE,

YQ Q-STRUCTURE(10);

and let the following procedure be defined:

TREE: PROCEDURE(D1) ASSIGN(D2);

DECLARE D1 R-STRUCTURE,

D2 Q-STRUCTURE;

CLOSE TREE;

procedure body

Both legal and illegal invocations of this procedure
are shown below.

I
I
I
I

Is
!
I
I

CALL TREE(ZR) ASSIGN(ZQ) ;

CALL TREE (ZR) ASSIGN (YQ) ;

4

CALL TREE(ZQ.QI) ASSIGN(ZQ) ;

CALL TREE (ZR) ASSIGN(ZR);

_--millegal - no tree-

equivalence

19-40

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

19,11 STRUCTUREFUNCTIONS

In HAL/S, user functions may return a structure result

type. Such functions can be used instead of structure data

items in many of the structure operations described above.

Structure functions follow similar patterns for their block

definitions and invocations as given in Section ii for

other data types.

BLOCKDEFINITION

As usual, the block is opened with a characteristic

opening statement, of the form:

labe/: FUNCTION(iI,i 2, ...) e-STRUCTURE;

I. /a6_l is the name of the function.

.

oi o2
, • , ... is the list of input para-

meters. The entire parenthesized list

may of course be omitted.

. is the name of the template describing

the tree organization of the function.

The template must be defined in a block

visible (according to usual HAL/S scoping

rules) to the opening statement. Note

in particular that the template cannot

be defined in a group of declaration

statements inside the function.

19-41

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

STRUCTURE Q:

1 QI INTEGER,

1 QI,

QS SCALAR,

QC CHARACTER(80);

TREE: FUNCTION(I,J) Q-STRUCTURE;

CLOSE TREE;

function body

RETURN OF STRUCTUREQUANTITIES

The RETURN statement of a structure function follows the

general form described in Section 11.6. The return is

similar to the transmission of structure input arguments,

the function itself playing the role of parameter. The

relevant rules are the same as those described for the

passage of input arguments, as given in Section 19.10.

Examples:

STRUCTURE S:

1 SS SCALAR,

1 SC CHARACTER(80);

STRUCTURE Q:

1 QI INTEGER,

1 Q1 S-STRUCTURE;

TREE : FUNCTION (DI) S-STRUCTURE;

DECLARE D1 Q-STRUCTURE;

I:I.ETURN D1.Q1;

CLOSE TREE;
19-42

illegal - lack of

tree-equivalence

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

INVOCATIONOF STRUCTUREFUNCTIONS

A structure function is invoked in the same way as a function

of any other data type, as described in Section 11.4. It

should be noted, however, that the function may on__ be

referenced as a whole. No referenc_ qualified or unqualified,

may be made to minor structure or terminal nodes of its

tree.

Example:

STRUCTURE Q:

1 QI INTEGER,

1 Q1,

2 QS SCALAR,

2 QC CHARACTER (80) ;

DECLARE ZQ Q-STRUCTURE;

TREE: FUNCTION Q-STRUCTURE;

CLOSE TREE;

ZQ = TREE;

ZQ.QI = TREE.Q1;

function body

legal invocation

illegal invocation

19,12 STRUCTURESIN INPUT/OUTPUT

Structures may participate in input/output in the same way

as other data types, as described in Section 12.

In single-copy structures, values of the terminal

nodes are transmitted in the order they are given

in the structure template.

In multiple-copy structures, values for one copy

are completely transmitted before proceeding to the

next, each copy being treated as for a single-copy

structure•

These ordering rules are a restatement of the rules

given in Appendix C.

The formats of the data fields are typically as given

in Appendix F for each data type.

19-43

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

OUTPUT

Values of any structure data item (either declared

structure or minor structure node), or of any structure

function may be output.

INPUT

Values of any structure data item may be input.

Example:

Given:

STRUCTURE Q :

1 QI INTEGER,

1 QI,

2 QS SCALAR,

2 QC CHARACTER (80) ;

DECLARE ZQ Q-STRUCTURE (2) ;

and the input data stream:

5 7.5 'ALPHA' 6

4.2 'BETA' _- --__

INITIAL

POSITION OF

DEVICE

MEC}_NISM

FINAL

POSITION OF

DEVICE MECHANISM

19-44

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

then:

READ(5) ZQ;

results in ZQ being given the following values:

QI = 5

ZQ

Q1

Qs - 7.5 QC - 'ALPHA' QS -= 4.2 QC - 'BETA'

19-45

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

20, HAL/SARRAYPROCESSINGFEATURE

The concept of a HAL/S array of any data type has already

arisen. Section 4 introduced one-dimensional arrays, and

Section 18, multi-dimensional arrays. However, other

than describing the subscript forms relevant to arrayed

data items, no attempt has yet been made to catalog the

ways they can be used.

There are occasions where a programming requirement

exists to perform some transformation on all elements of

an array. One realization of the algorithm for implementing

the transformation consists of using the HAL/S DO FOR

statement to index through the array, carrying out the

transformation element by element. A much more compact

and elegant HAL/S realization* consists of using "arrayed"

expressions and assignments in which the operands are

generally arrays, and which look representationally as if

the operations were being carried out in parallel on all

array elements, rather than serially element by element.

Of course, with the current generation of machines, in

most implementations the parallelism is only an illusion

created at the source language level. Because of this,

it is not necessarily more efficient to use arrayed

expressions and assignments rather than DO FOR statements.

This section states the rules governing the construction of

arrayed expressions, and describes how they are used in

various language constructs. Understanding of Sections 18 and 19

is a prerequisite for this section.

In Fortran, a sequential realization, using the DO state-

ment is the best possible realization.

20-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

20,1 THE ARRAYNESSOF OPERANDS

An operand is said to be arrayed if either or both of the

following statements are true:

• it is a declared array item;

• it is a node (root, fork or leaf) of a structure

with multiple copies (see Section 19.).

QUANTITATIVEARRAYNESS

The "arrayness" of an operand is a quantitative description

of its array property:

• the number of dimensions;

• the size of each dimension in order•

In the remainder of this section, the arrayness of any

operand will be expressed in the following general form:

{N: nl,...n N}

where N is the number of dimensions,

i
n is the size of the i th dimension for 1 _ i < N.

Arrayness arising from either of the sources stated above

are indistinguishable as far as the constructs to be

described are concerned.

The following examples illustrate how the arrayness of various

kinds of operands are derived.

Examples:

STRUCTURE Q :

1 QI INTEGER,

1 QS ARRAY(3) SCALAR;

DECLARE ZQ Q-STRUCTURE (4) ;

DECLARE I ARRAY (4) INTEGER;

DECLARE S ARRAY (4,3) SCALAR;

20-2

INTERMET81CS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138" (617) 661-1840

The arrayness of S is {2:4,31, i.e. 2 dimensions

of size 4 and 3 respectively.

The arrayness of I is Ii:4}

The arrayness of ZQ and ZQ.QI are both {1:4}.

The arrayness of ZQ.QS is {2:4,3} -

Note that the part of the arrayness

due to multiple structure copies is

placed before that due to the ARRAY

specification.

is {1"3}
The arrayness of SI, *

The arrayness of ZQ.QS 1 TO 2; 2 AT 2 is {2:2,2}

coples array elements

selected selected

ZQ.QSI; 1 has no arrayness - one element in one copy
has been selected by the subscript.

MATCHINGOF ARRAYNESSES

Two operands have matching arrayness if, and only if, the

quantitative arraynesses are identical in all respects.

Example:

DECLARE A1 ARRAY (2, 3,4) ,

A2 ARRAY (2,3,2) ;

The arrayness of A1 and A2 are {3:2,3,4} and {3:2,3,2}

respectively. They differ because the sizes of the

rightmost dimension differ. The arrayness of

A1 is {3:2,3,2} which does match that of A2.
• ,,,i TO 2

20-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

20,2 ARRAYEDEXPRESSIONS

In HAL/S0 an arrayed expression is one whose result is

an array. It may be one-dimensional or multi-dimensional,

and of any type- arithmetic, character, or bit string.

Arrayed expressions are constructed precisely according

to the rules given in Section 7, and expanded for bit strings

in Section 17.4. The sole difference is that one or more of

the operands possess arrayness.

The following rules govern the usage of arrays in expressions:

.

•

Any operand may either possess

arrayness or not.

All operands with arrayness

must match in their arrayness
in the sense described in

Section 20.1.

Evaluation of the expression can be viewed as a set of

elemental evaluations, each proceeding in parallel with

the others. Each elemental evaluation selects a unique

combination of array index values out of the total possible

given the arrayness common to all arrayed operands, and uses

it throughout the entire evaluation. Unarrayed operands take

part in all of the elemental evaluations.

Pictorially, the evaluation of an unarrayed expression may be

represented typically thus:

EVALUATION

o ration 2

(operation

(operation3)

[operand 3_
START OF

selectio, of 1

element from

array by

.8ubscrlptlng

20-4

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138" (617) 661-1840

By comparison the parallel evaluation of a typical arrayed

expression can be represented pictorially (for two dimensions)
thus:

START OF

ELEMENTAL

EVALUATIONS

(operation 2_ _operatiqn 3)

_. _ _-,,"

o_zand' 2) I __

[operand 3] .

Iarrayness

_ _a_a {2,3,2} Coperand 4)

selection of

array partition

with arrayness
{2,3,2} by

subscr iptlng

Examples :

Given:

DECLARE INTEGER,

Ii ARRAY(2,3),

I2 ARRAY(4) ;

(_ 3 41 and I2-= (7 3 1 5)with Ii - 2

then Ii + Ii - 2 is an operand expression

equivalent in effect to

Ili,] + Ili,] - 2 for 1 _< i _< 2, 1 ,<] _< 3

and its resulting value is i0 2

20-5

INTERMETRICS INCORPORATED .701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Further Ii + I2 - 1 is an illegal arrayed expression

since the arraynesses of Ii and I2 are {2:2,3} and {1:4}

respectively.

However, Ill,, + I22 TO 4 - 1 is legal since subscripting

has caused the arraynesses of both operands to be {i 3}.

Its result is (7 3 8).

If, in addition:

I
I STRUCTURE Q:
I
I QI INTEGER ARRAY (3)

'_ QS SCALAR;

i DECLARE ZQ Q-STRUCTURE (2) ;
I
I

with

then ZQ.QI - Ii + 2 is legal since both arrayed

operands have arrayness {2:2,3} and the result is

a 2 by 3 array with values:

BEHAVIOUROF BUILT-IN FUNCTIONS

Library or "built-in" functions may appear in arrayed

expressions, with arguments with or without arrayness.

Most of the built-in functions described in Appendix B,

unless stated there to the contrary, are subject to the

following rules in such contexts.

20-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A function with no arguments or with unarrayed

arguments may either be evaluated once only, or

once during every elemental evaluation of the

expression in which the function is invoked,

depending on the implementation. For most built-

in functions, the difference is immaterial since

repeated invocations with the same argument usually

cause the same result to be returned. Some exceptions
are*:

RANDOM CLOCKTIME

RANDOMG RUNTIME

A function with one argument is treated as if it

were a prefix operation upon its argument. When

the argument is arrayed, the function is evaluated

once during every elemental evaluation of the

expression containing it.

Example:

Given:

i
t DECLARE X ARRAY (4) SCALAR;
i
i

then

X + SIN(X)

is equivalent to

• + SIN (Xi)X for 1 _< i _< 4,

the expression, including the sine function

being evaluated 4 times.

* See Appendix B for a complete list of functions

anomalous in this respect.

20-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

A function with two arguments is treated as if

it were an infix operation upon its arguments.

When one or both arguments are arrayed, the function

is evaluated once during every elemental evaluation

of the expression containing it.

Examples:

Given:

DECLARE INTEGER,

Ii ARRAY(3,4) ,

I2 ARRAY (3,4) ,

I3 ARRAY (4) ;

then

II + DIV(I2,5)

is equivalent to

Ili,] + DIV(I2i,j,5)

Note that

for 1 ,,< i ,,< 3, 1 _< j .< 4

DIV(II,I2) - I3

is not a legal expression because the arrayness
of I3 is {1:4} which does not match those of Ii

and I2, which are {2:3,4}.

20-8

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

20,3 ARRAYEDASSIGNMENTS

HAL/S permits the receiving data item of an assignment to

be arrayed. The expression to be assigned to such a data

item may be arrayed or unarrayed. The rules applicable to

each of these cases are as follows:

UNARRAYED EXPRESSION. The assignment can be viewed as a

set of elemental assignments proceeding in parallel, each

one selecting a different element of the receiving data

item into which to place the single result of the expres-

sion. Pictorially, this may be represented typically (in
two dimensions) thus:

(receivin_ data item)

arrayness
{2:3,2}

ARRAYED EXPRESSION. The assignment can be viewed as a set

of elemental assignments proceeding in parallel, each one

selecting a different element of the receiving data item

into which to place the result of the correspondin@

elemental expression evaluation. Pictorially, this may
be represented typically (in two dimensions) thus:

20-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i <_v

v

f t
_expression) (.receiving data item)

arrayness

The following rules therefore govern a simple arrayed

assignment:

io

o

The expression to be assigned

may be arrayed if and only if

the receiving data item is

arrayed.

If the expression is arrayed,

its arrayness must match that

of the receiving data item.

20-10

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661 1840

Examples:

Given :

then

i

i
i

DECLARE INTEGER,

Ii ARRAY(2,3) ,

I2,

I3 ARRAY(2,3),

I4 ARRAY(4) ;

Ii = I2;

is an arrayed assignment in which all elements of

Ii are assigned the value of I2.

i
! Ii = I3;
f
l

assigns each element of I3 to the corresponding

element of Ii.

i
I
! Ii = I4 ;
t

is illegal because the arrayness of the receiving

data item is {2:2,3} while that of the right hand

side is {1:4}.

!
i
I I2 = Ii;
f

is illegal because the right hand side has arrayness

while the receiving data item has none.

20-11

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

El

Further given:

STRUCTURE Q :

1 QI INTEGER,

1 QI,

2 QS ARRAY(4) SCALAR,

2 QC CHARACTER (8 0) ;

DECLARE ZQI Q-STRUCTURE (2) ;

DECLARE ZQ2 Q-STRUCTURE(2);

DECLARE S ARRAY(2,4) SCALAR;

the following assignments are legal:

ZQI = ZQ2;

ZQI.QI = ZQ2.QI;

ZQI.QI.QS = ZQ2.QS;

zQI.QI.QS = S;

MULTIPLEASSIGNMENTS

In assignments which have multiple receiving data items,

the following extra rule is required:

o If one receiving data item

possesses arrayness, then all

must possess matching arrayness.

20-12

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1_0

Example s:

Given:

DECLARE INTEGER,

Ii ARRAY(2,3),

I2,

I3 ARRAY(4) ,

I4 ARRAY(2,3) ;

then
I
I

1 Ii, I4 = I2;

is legal since the arrayness of Ii and I4 match.

However, both of the following are illegal:
f
l
! Ii, I2 = I2;

t I3 = I4;! I1,
I

20.4 ARRAYEDSUBSCRIPTING

The HAL/S array processing feature extends to subscripts

of operands. If a subscript itself contains arrayed operands,
then it too is evaluated on an elemental basis.

If the subscripted operand is part of an arrayed

expression then the arrayed subscript is evaluated

once during every elemental evaluation of the

expression containing the operand. The arrayness

of the subscript must of course match that of the

rest of the expression.

If the subscripted operand is a receiving data item

in an assignment, then the arrayed subscript is

evaluated once during every elemental assignment.

The arrayness of the subscript must match that of

the receiving data item(s).

20-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

In general, the result of array subscripting is the

selection of subscript values which differ for each

elemental manipulation.

Examples:

Given:

DECLARE ARRAY (2,3),

wv/I
and I -- /i 2

k3 1

V VECTOR(3),

I INTEGER;
I

.5! 7.5

I_ .51 8.5

It .51 9.5
j i-- I ".

i-" '5] ,6.5
,-, , 5 i 7.5

i-' . 8.5

then

is equivalent to

Vi,]:ii,] for 1 ,6,i _< 2, 1 _] _ 3

The arrayed vector subscript I selects an array of

scalars from the vector array V as shown below:

,-
2.5 /5.51 8.51 _/" \
3.5 /6.51 9.51. -_ 1.5 5.5 9.5)- : L. _ " .._ [-2.5 -3.5 17.5

o.5 -6.sl I_ _ .,, ,,
-1.5 l-4.51,x -7.5f, _ [/

20-14

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

In assignment context, the following values of V

would be changed:

V2,1:3 V2,2:1 V2,3:

Note that an arrayed subscript can actually @enerate

arrayness in an unarrayed data item. For example, if

C is an unarrayed character string with C _'ABCD'

then

C I has the arrayness of I.

The values are selected as follows:

, 'A' 'B' 'C I

Then C I IC I would be an arrayed expression with
values :

('ABCDA' 'ABCDB' 'ABCDC:)'ABCDC' 'ABCDA' 'ABCDB

In an assignment context, the following values of

C would be changed:

(el C2 C3>C 3 C 1 C 2

Note that values of Cl, C 2 and C 3 would be each

changed by two elemental assignments. The results

of this ass_ment are therefore likely to be implemen-

tation dependent.

Other examples of arrayed

subscripting are given in

Spec./5.4. i.

20-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

20,5 ARRAYEDCOMPARISONS

Relational expressions have been described in Sections

9.2. 17.6, and 18.9. The comparisons which comprise

relational expressions may possess arrayed operands. If

one or both operands in a comparison are arrayed, then only

the Class II comparative operators may be used, irrespective

of the types of the operands:

Symbol Purpose Class

NOT =

equals

not equals

II

The additional rule applicable to arrayed comparisons is:

l. If both operands possess array-

ness, their arraynesses must

match.

The comparison is viewed as a set of elemental comparisons.

The outcome of all elemental comparisons is combined to

form a sin@le TRUE or FALSE logical result. The following

table shows the conditions necessary for arriving at TRUE
or FALSE results.

20-16

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Operation Result

NOT =

Conditions for Result

TRUE Equality in all

elemental comparisons
is obtained

FALSE Equality in one or
more elemental com-

parisons is lacking.

TRUE Equality in one or
more elemental com-

parisons is lacking.

FALSE Equality in all

elemental comparisons
is obtained.

Examples:

If I1, I2 are 2 by3 arrays of integers

with Ii - Ii 2 3>4 5 and I2 -- Ii 2 6)4 5 3

then Ii = I2 is FALSE.

However, Ii,,l TO 2 = I2,,i TO 2 is TRUE.

I1 = I2 is illegal since the arraynesses of the
,,i

operands no longer match.

If further I3 is a 2 by 3 array of integers with

I3 _ (ii ii ii>

then

I3 £ Ill, 1 is TRUE.

In each elemental comparison, an element of I3 is

compared against I11 i which is unarrayed, and in

this case, equality_s obtained.

20-17

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

20,6 ARRAYEDARGUMENTSIN PROCEDURESAND FUNCTIONS

The arguments of procedures and functions may possess

arrayness when the corresponding formal parameters meet

certain conditions. Parameters of procedures and functions

may be declared as arrays of indefinite form, thus allowing

the passage of arguments whose arrayness varies from invoca-
tion to invocation.

INDEFINITELYARRAYEDPARAMETERS

The parameters of functions and the input or assign

parameters of procedures may be declared to be indefinite

arrays. The form of array specification is:

io

ARRAY (*)

The array specification is

placed as shown in Section
4.2.

Examples :

TWICE: PROCEDURE (A) ASSIGN(B) ;

DECLARE A ARRAY(,) VECTOR(3) ;

DECLARE B ARRAY(,) BIT(16) ;

CLOSE TWICE;

procedure body

20-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The asterisk implies that although the arrayness of the

corresponding argument is always 1-dimensional, its size

can vary from invocation to invocation.

The number of multiple copies in a structure parameter

may also be made indefinite using the following form:

lo

o

a-STRUCTURE (,)

is the name of the template

describing the tree organization
of the structure.

Section 19.3 describes the loca-

tion of the construct in a struc-

ture declaration.

Example:

FUN: FUNCTION(C) SCALAR;

STRUCTURE Q :

1 QI INTEGER,

1 QS SCALAR;

DECLARE C Q-STRUCTURE(,);

cLOSE FUN;

function body

Note that the ability to define an indefinite array does

not extend to an arrayed structure terminal.

Example

BAD: FUNCTION(C) SCALAR;

STRUCTURE Q:

1 QI INTEGER,

1 QS ARRAY(,) SCALAR;

DECLARE C Q-STRUCTURE;

CLOSE BAD;

function body

÷ illegal

20-19

INTERMETRICSINCORPORATED-701CONCORDAVENUE "CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

ARRAYED PROCEDUREARGUMENTS

Both input and assign arguments of a procedure invocation

may possess arrayness. The parameters corresponding to

such arguments must be arrayed. The rules for passage of

such arguments ar---e-as follows.

INPUT ARGUMENTS. The transmission of the argument may

be viewed as its assignment to the corresponding input

parameter. However, the rules for arrayness matching

are more severe than for arrayed assignments.

i.

•

The arrayness of the argument must

match that of the corresponding

parameter.

If the parameter is an indefinite

array, arrayness matching is en-

sured if the corresponding argument

is a 1-dimensional array.

ASSIGN ARGUMENTS. If an assign argument possesses

arrayness, it is either because it is an arrayed data

item (see Section 11.5) or because it is part or whole

of a structure with multiple copies (see Section 19,3).

In these cases the rules for arrayness matching are as
follows:

i•

•

•

,

•

The arrayness of the argument must

match that of the corresponding para-
meter.

If the parameter is an indefinite

array, arrayness matching is ensured

if the corresponding argument is a

1-dimensional array•

If the argument is a_ of a structure
which has multiple coples, structure

subscripting must be used to limit the

number of copies in the argument to one.

If array subscripting is present it

must be such as to select one array

element only.

If component subscripting is present,

where necessary array subscripting must

be used to limit the number of array

elements in the argument to one.

20-20

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

Given the following procedure:

I
I ONE:' PROCEDURE(A) ASSIGN(B) ;
I
I DECLARE A ARRAY (2,3) SCALAR,

! B ARRAY (4) BIT (16) ;
f

!

i procedure body

I
!

i CLOSE ONE;

and the following data declarations:

I DECLARE P1 ARRAY(2,3) SCALAR,
P2 ARRAY (2,5) SCALAR,

I P3 ARRAY(4) BIT(16),

t P4 SCALAR,

I P5 ARRAY(2,5) BIT (16),
I P6 BI_ (16);

then some legal and illegal invocations of the

procedure are as follows:

! CALL ONE (PI) ASSIGN (P3) ;
!! CALL ONE(P2) ASSIGN (P3) ;

IS *,i TO 3

t, CALL ONE(P2. + P1 - P4) ASSIGN(P6);

is. *,3 TO 5 illegal - not arrayed
f

CALL ONE (P4) ASSIGN (P5) ;

IS I,I TO 4

___legal arrayness but
illegal subscript

illegal - not arrayed

If a second procedure is given:

TWO: PROCEDURE _) ASSIGN (B) ;

DECLARE A ARRAY (*) SCALAR,
B ARRAY (*) BIT (16) ;

CLOSE TWO;

procedure body

20-21

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138'(617) 661"1840

Then some invocations to it are:

S

CALL TWO(P1) ASSIGN(P3) ;

I,,

CALL TWO(P2) ASSIGN (P3) ;

i,*

CALL TWO(P1) ASSIGN(P6);

_Illegal _ _ 1 ~

of array dimensions

not arrayed

ARRAYEDFUNCTIONARGUMENTS

If a function has one or more arrayed arguments, one of

two situations can arise, depending on the form of the

corresponding parameters.

ARRAYED PARAMETER. If the parameter corresponding to

an argument with arrayness is itself arrayed, then the

whole of the argument is transmitted in a single invoca-

tion of the function. The same rules apply to this

situation as to the input arguments of procedures.

UNARRAYED PARAMETER. If the parameter corresponding

to an argument with arrayness is itself unarrayed,

then the arrayness of the argument must match other

arraynesses in the expression in which the function is

invoked. In this situation, the function is repeatedly

invoked, once during every elemental evaluation of the

expression containing it. During each invocation, the

appropriate elemental argument transmittal takes place.

Examples:

Given the function:

ONE: FUNCTION (A, B) SCALAR;

DECLARE A SCALAR;

DECLARE B ARRAY(2,5) SCALAR;

_ I function body

CLOSE ONE;

20-22

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

and the declarations

I

i DECLARE P1 ARRAY(2,5),i
! P2 ARRAY(2,5) ,
I
I P3 ARRAY(3),

t P4;i
I

then some legal and illegal invocations of the
function are as follows:

P4 + ONE(P4,P2/2)...

7-
arrayness matches that of

parameter - function invoked

once.

P2 + ONE (P2,PI) ...

I _prrayn_ss matches that of
- all of P1 transmitted

every elemental evaluation

parameter unarrayed - one element of

P2 transmitted every elemental evaluation.

The second invocation is equivalent to:

P2i,] + ONE(P2 Z,] PI)... for 1 _< i _< 2, 1 _<] _< 5

The function can in fact generate the only arrayness

of the expression:

P4 + ONE(P2,PI)...

is equivalent to

P4 + ONE(P2 Z,],PI)... for 1 _ i 4 2, 1 _] _ 5

P3 + ONE(P2,PI)... is illegal since the arrayness of P3
does not match that of P2.

20-23

INTERMETRICSINCORPORATED.701 CONCORD AVENUE -CAMBRIDGE MASSACHUSETTS02138-(617) 661-1840

P2 + ONE(P2,P3)... is illegal because the arrayness

of P3 does not match that of the corresponding

parameter.

This example would become legal if the declaration

for the parameter B were:

f
| DECLARE B ARRAY(,) SCALAR;

!

Restrictions are placed

upon the array processing

of arguments of functions
if the function definition

follows any of its invoca-

tions.

See: Spec./4.6.

20-24

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

20,7 ARRAYSIN INPUT/OUTPUT

The values of an arrayed expression can be output by

using the WRITE statement. The values of an arrayed
data item can be input by using the READ statement.

Section 12.2 described the data formats for one-dimensional

arrays on output: Section 12.3 described the data formats

for one-dimensional arrays on input.

The order of input and output is generated by application
of the rules given in Appendix C.

Example :

IF I is a 2 x 3 array of integers with

i = (i 25 3)

then execution of

t
f WRITE(6) I;
l

results in the following output being generated:

20-25

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INITIAL POSITION

OF DEVICE

MECHANI SM

1 2 3 4 5 6_._

_FINAL POSITION

OF DEVICE

MECHANISM

20-26

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

21, EXPLICITCONVERSIONS

Section 7•5 in Part I of the Guide introduced some of the

commoner explicit conversions of HAL/S. Explicit precision

conversion, and the VECTOR and MATRIX conversion functions

were described• The language contains many more kinds of

explicit conversions, however, which provide a controlled and

highly visible interface between the various data types.

This section deals with conversion functions, classifying

them according to the data type of their results.

21,1 VECTORAND MATRIXCONVERSIONS

The forms of VECTOR and MATRIX conversion functions have been

given in Section 7.5. It remains in this section to present

the general forms of argument list they may possess.

The argument list of a VECTOR or MATRIX conversion may take

the following general form:

i.

•

•

(¢xp I, exp 2)

Each exp is an expression of any

of the following types:

MATRIX INTEGER

VECTOR SCALAR

Any expression may possess array-
ness in the sense described in

Section 20.2.

The total number of values summed

over all expressions must match

the length of the vector result,

or the product of the row and

column dimensions of the result,

as appropriate.

21-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

The ordering of the values of the expression list in the

resulting vector or matrix is specified by the following.

• The values of each expression in turn are converted

to a linear list by applying the rules of Appendix C .

The lists are catenated from left to right forming

a single linear list of values.

For a VECTOR conversion, the resulting vector is

formed directly from the linear list. For a MATRIX

conversion, the resulting matrix is formed by a row-

by-row assembly from the linear list.

Example:

If V is a 4-vector with V -

and M is a 2 x 2 matrix with M--[4 _]

then

MATRIX 2,4(M,v) - [4 15 22 0]

EXPRESSIONREPETITION

Any expression in the argument list of a MATRIX or VECTOR

conversion can be repeated by prefacing it with a repetition

factor with the following form:

le

i
,.. n# exp ,...

n is a positive non-zero integer

literal specifying the number of

times the value or values of the

expression are to be repeated.

21-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

Example :

If V is a 3-vector with V- [!]

then

MATRIX2 3(2#V) -- [1 23]' 2

21,2 INTEGERAND SCALARCONVERSIONS

The INTEGER and SCALAR conversion functions convert to

integer and scalar type respectively. The behavior of

these functions varies, depending on whether they possess

a single expression as argument, or a list of expressions.

SIMPLEFORM

The simple form of the INTEGER and SCALAR conversion functions
is:

INTEGER (exp)

SCALAR (exp)

l. ZXp is an expression of any of the

following types:

BIT STRING (and BOOLEAN) INTEGER

CHARACTER SCALAR

. eXp may possess arrayness, in which

case the arrayness must match that of

the expression of which the conver-

sion forms a part. The result is to
cause an elemental conversion for

every elemental evaluation of the

outer expression (See Section 20.2).

. Conversions to integer or scalar type

proceed according to the rules given

in Appendix A.

21-3

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examp le s :

If C is a character with C - '123.5'

and B is a 3-array of bitstrings of length

8 withB [Fl6]
1016

L ICI6

then

SCALAR(C) -= 123.5

and

If I is a 3-array with I -

then I+INTEGER(B) - [i I

LISTFORM

The list form of the INTEGER and SCALAR conversion functions

creates an array result, in addition to type converting the

list of expressions constituting its arguments. Its form is

as follows:

21-4

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS02138 - (617) 661-1840

lo

o

.

.

INTEGER i 2 (expl' exp2 ' " " ")

n ,n ,...

2 (expI' exp2' " " ")SCALAR 1
n en ,...

The subscripts n/ for i = 1,2,...

are positive integers specifying the
number and size of dimensions of the

resulting array. The total number

of values summed over all the expres-
sions in the list must be consistent

with the number of array elements

implied. The upper limit on i is
3*.

The subscripts may be Omitted

entirely, in which case a linear l-

dimensional array is created, whose

length is equal to the total number

of Values summed overall the expres-
sions.

Each exp is an expression of any of

the following types:

INTEGER

SCALAR

VECTOR

MATRIX

BIT STRING (and BOOLEAN)
CHARACTER

and may optionally possess arrayness.

Conversions to integer or scalar type

proceed according to the rules given

in Appendix A.

* This number may vary between implementations. See the

appropriate User's Manual.

21-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Note that the list form can only have one expression in the

list without reverting to the simple form if either of the

following statements are true:

• the type of the expression is matrix or vector;

• explicit subscripting of the function is present.

The ordering of values of the expression list in the resulting

array is specified by the following:

The values of each expression in turn are converted

to a linear list by applying the rules of Appendix C.

The lists are catenated from left to right forming

a single linear list of values.

• The linear list is regenerated to an array of the

given dimensions by applying the rules of Appendix C.

Examples:

If V is a 4-vector with V E

and Mis a 2 x 2 matrix with M - [i
L-

then INTEGER2,4 (V,M) - [4 1 32]0 5

and INTEGER(V,M) - F4"i
1
3

2
1

0

5

41
.

INTEGER(V) I]

0]4

and is of list form.

21-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If I is a 4-array of integers

then I + INTEGER(V) =

Note that even though the function appears in an

arrayed expression, in this and all other cases

involving the list form, the implementation is

generally to precompute the entire array result,

and then evaluate the expression containing the

conversion on an element-by-element basis.

EXPRESSIONREPETITION

As with the VECTOR and MATRIX conversions, the expressions

in the list of an INTEGER or SCALAR conversion may be

repeated using the form:

i.

.... n# ¢×p_,

n is a positive non-zero integer

literal specifying the number of
times the value or values of the

expression are to be repeated.

21-7

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example :

If S is a scalar with S - 1.5

then INTEGER(5#S)--[iii and is of list form.

SIMULTANEOUSPRECISION SPECIFICATION

In the absence of any explicit indication, the result

of an INTEGER or SCALAR conversion is always single

precision. The precision can be explicitly stated in the

same way as in a VECTOR or MATRIX conversion.

If no subscripting is present, the forms are:

l.

o

INTEGER@sINGLE(....

SCALAR@sINGLE(....

INTEGER@DOUBLE(....

SCALAR@DoUBLE(....

The first two forms force a single

precision result; the second two,

double precision.

Precision conversion is carried out

for each expression in turn before

assembly of the result.

21-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If subscripting is present, the corresponding forms are:

INTEGER 1 2 (....
@SINGLE,n ,n ...

SCALAR I 2 (....
@SINGLE,n ,n ...

INTEGER 1 2 (....
@DOUBLE,n ,n ...

SCALAR 1 2 (....
@DOUBLE,n ,n ...

Examples:

INTEGER@DoUBLE(X)

INTEGER@DoUBLE, , •2,2(5.0,'15',BIN'1011' -7 5)

simple form

list form

21,3 BIT CONVERSION

Conversions to bit string type are carried out by the BIT

conversion function. There are two forms: the simple form

converts other data types to bit string type using the standard

conversion rules; the radix form can only convert character

data type to bit string type, and uses d_fferent conversion

rules.

Both forms are similar to the simple form of INTEGER and

SCALAR functions, in that they have one expression only.

21-9

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

SIMPLEFORM

The simple form of BIT conversion is as follows:

l•

•

o

BIT subscjtipt (zxp)

zxp is an expression of any of the

following types :

INTEGER

SCALAR

BIT STRING (and BOOLEAN)

CHARACTER

exp may possess arrayness in which

case the arrayness must match that

of the expression of which the con-

version forms a part. The result is

to cause an elemental conversion for

every elemental evaluation of the

outer expression (see Section 20.2).

Conversion to bit string type proceeds

according to the rules given in

Appendix A. The result is always

a 32-bit string*.

•

So

Su_pt represents component sub-

scripting on the result of the con-

version. It possesses the same forms

as component subscripting on bit string

data items as described in Section 17.3.

If subseJ_ipt is absent, the result of

the function is the entire bit string

generated by the conversion.

* This value may vary between implementations.

appropriate User's Manual.

See

21-10

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Examples. -

If I is a halfword integer with I - 5

then BIT(I) -= 0000000516

If C is a character data item with C = 'i0110011101'

then BIT(C) = 000000000000000000000101100111012

BIT17 TO 32 (c) -= 00000101100111012

and BIT28 TO 32 (C) = 111012

IE

21-11

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

RADIXFORM

The radix form of BIT conversion is used when a character

value is to be converted by an explicit rule to a bit string.

A radix specifying the conversion rule is supplied in place

of a subscript. The possible forms are as follows:

i II • I

I.

o

.

e

BIT@BIN(eXP)

BIT@ocT(eXP)

BIT@DEC(eXP)

BIT@HEX(eXP)

ZXp is an expression of character

type whose value must consist

entirely of a string of digits

legal for the specified radix.

The radices have the following

meanings:

radix

@BIN

@OCT
@DEC

@HEX

digit strin 9

binary

octal

decimal

hexadecimal

exp may possess arrayness with the

same implications as in the simple
form of BIT conversion.

The conversion generates the

binary representation of the

input digit string. The binary

representation is truncated or

padded with binary zeroes on

the left to create a 32-bit string*.

* This value may vary between implementations.

appropriate User's Manual.

See

21_12

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "GAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Examples :

BIT@HEx('FA0') -= 00000FA016

BIT@DEC('1024') - 0000040016

BIT@ocT('177777') - 0000FFFFI6

BIT@HEx('FOFIF2F3F4') - FIF2F3F416

21,4 CHARACTERCONVERSION

Conversions to character type are carried out by the

CHARACTER conversion function. As with the BIT conversion,

there are two forms: the simple form converts other data

types to character form using the standard conversion rules;

the radix form can only convert bit string data to character

type, and uses different conversion rules.

21-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

SIMPLEFORM

The simple form of CHARACTER conversion is as follows:

CHARACTER S ubsc_Lipt (eXp)

i.

1

Be

4.

So

exp is an expression of any of the

following types :

INTEGER

SCALAR

BIT STRING (and BOOLEAN)

CHARACTER

¢xp may possess arrayness, with

the same implications as in the BIT

conversion function. (See Section

21.3).

Conversion to character type proceeds

according to the rules given in

Appendix A. The length of the result

of conversion depends on the type of

the input data.

•subscript represents component sub-

scripting on the result of the con-

version. It possesses the same forms

as component subscripting on charac-
ter data items as described in

Section 6.1.

If Su_pt is absent, then the
result of the function is the entire

string of characters generated by

the conversion.

21-14

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

D

Examples :

If I is a halfword integer with I = 173

then CHARACTER(I) -- '173'

CHARACTER1 TO 2 (I) --- '17'

CHARACTER1 TO 3 (I) - '173'

If B is a bit string of length 4 with

B ---01012

then

CHARACTER(B) - '0101'

(note that number of characters

is the same as the number of bits.)

21-15

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

RADIXFORM

The radix form of CHARACTER conversion is used when a bit

string value is to be converted by an explicit rule to a

character string. Analogous to the radix form of BIT

function, a radix specifying the conversion rule is supplied

in place of a subscript. The possible forms are as follows:

le

e

3_

.

CHARACTER@BIN (exp)

CHARACTER@ocT (@.xp)

CHARACTER@DEC (exp)

CHARACTER@HEX (Zxp)

exp is an expression of bit string type,

and possibly possessing arrayness, with

the same implications as in the BIT

conversion function."

The value of the bit string is converted

to a string of digits as specified by the

radix.

The radices have the following meanings:

radix

@BIN

@OCT

@DEC

@HEX

, digit string

binary

octal

dec ima 1

hexadecimal

The length of the resulting string

varies depending on the value of

exp.

El
Examples:

CHARACTER@BIN(BIN'001010') E '001010'

CHARACTER@ocT(BIN'001010') E '12'

CHARACTER@DEc(BIN'001010') 5 'i0'

CHARACTER@HEx(BIN'001010') = 'OA,

21-16

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

21.5 SUBBITPSEUDO-CONVERSION

The SUBBIT pseudo-conversion function provides a way of

transferring a value from one data type to another

without conversion. Effectively it is used as a method

of circumventing HAL/S type compatibility rules in a

limited and controlled way. The value transferral takes

place using the bit string type as an intermediary:

old type ÷ bit st_ing ÷ new type

This transferral requires the use of the SUBBIT conversion

both in reference and in assignment context.

In reference context, SUBBIT causes a data

type to be referenced as if it were a bit

string.

In assignment context, SUBBIT causes a data

item to be assigned into as if it were a bit

string.

There are, of course, other contexts where it is convenient

to use pseudo-conversion other than those described above.

The form of the SUBBIT pseudo-conversion in either context

is as follows:

21-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

I.

o

.

o

SUBBIT _uha c2/pt (an@umz,_)

In assignment context, a_.gwnCn_: is a

data item, either subscripted or not.

In reference context, a/4umz_t is an

expression. The following types are

legal:

INTEGER BIT STRING (and BOOLEAN)

SCALAR CHARACTER

.gum may possess arrayness. In

reference context it causes a data type

to appear to be a bit string expression

with arrayness; in assignment to appear
as a bitstring data item with arrayness.

The _ub_c_pt is optional. If it is

absent, only the N leftmost bits in the

bit pattern of the argument are visible.

For different types of argument the
values of N are:*

t_e

DOUBLEINTEGER SINGLE

DOUBLESCALAR SINGLE

CHARACTER

BITSTRING

N

32

16

32

32

32

Number of bits

in argument

If _ca/pt is present, it specifies what

range of bits in the bit pattern of the

argument are to be made visible. It must

conform to the rules for subscripting of
bit string data items as described in

Section 17.3 in all respects save that
the index values are confined to the

range I-N given below, rather than 32**:

type N

_DOUBLE 32
INTEGER ISINGLE 16

_DOUBLE 64
SCALAR ISINGLE 32

Current workingCHARACTER length of

argument.

BIT STRING _ Number of bits
! in argument.

* The values may vary between implementations. See

appropriate User's Manual.

** The maximum length of bit strings is an implementation.

See appropriate User's Manual for variations.

21-18

INTERMETRICSINCORPORATED.701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Examples:

If I is a double precision (fullword) integer

then

!

! SUBBIT(I) = SUBBIT('1234') ;!
!

causes the following to occur:

The SUBBIT in reference context causes the creation

of a 32-bit string with value FIF2F3F_6 *. When
this value is assigned into I, its bi_ pattern

becomes FIF2F3F416.

Hence, I E 4059231220 in decimal notation, if unsigned.

Given that I now has this value

!
I SUBBIT (I) = SUBBIT
IS 29 TO 32 4 TO ii

has the following effect:

(333);

The bit pattern of 333 is

be a halfword integer).

context selects from this the 8-bit string 0A16.
This overlays bits 29-32 of the bit pattern

±
F1F2F3F_6

±
0A16

014DI 6 (it is assumed to
The SUBBIT in reference

of I:

The final bit pattern is thus FIF2F30A16.

Hence, I E 4059230986 in decimal notation.

* Using EBCDIC character codes.

21-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DETAILEDBEHAVIOROF SUBBIT

SUBBZT has the effect of opening a "window" on the bit

pattern of its argument, the width and position being

determined by the subscript, if the conversion possesses

one, or implicitly otherwise. Various side effects may

occur depending on the width and position of the window

relative to the bit pattern of the argument. These effects

may differ depending on whether the SUBBIT pseudo-conversion

is in reference or assignment context.

The examples given above have avoided these side effects,

which may include padding, truncation, or error conditions.

These phenomena are summarized below for each context in
turn.

• REFERENCE CONTEXT

The following diagrams summarize the behavior of SUBBIT

in/reference context. In general, padding and truncation

do not occur but an error condition may arise.

window IIIIII LLL
I I _ I I !
I , .I , ! I

bit pattern ,'_1 111 I I 1 I I 1 Ill,i I' I' I I ___

resultant _ _ _

value _ I' I I I error condition
• (violates rule

4 above)

21-20

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138-(617) 661o1840

Examples :

If I is a single precision (halfword) integer

with I - 32767

then it has the bit pattern 7FFFI6

Thus,

SUBBIT (I) - 7FFF
16

SUBBITI TO 8 (I) - 7F16

SUBBITI TO 32 (I) is illegal

(length 16 result)

(length 8 result)

ASSIGNMENT CONTEXT

In contrast to SUBBIT in_:reference contex_ there are two

steps to its operation in assignment context. The first

is the fitting of the value to be assigned to the window;

the second is the assignment through the window into the bit

pattern of the argument. The first step may involve

padding or truncation, the second may cause an error condi-

tion to arise. The following diagrams illustrate this.

STEP 1

windowllIIII
I

I I
I i

value to

be assigned I i I I I I

I I
I I
I I

l

adj u sted

value I I I .I ! I

i,l,,, !-"W'"!
I i
I I I I Ii i

I111'11 i
i I I I

I _ I I
I _ I

IIII I°I°III I

short window-

truncation on

left

long window -

padding on left

with binary zeroes

21-21

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

STEP 2

adjusted
value

window

i I
i I
I 0

IIIIII
I I
I I

original I

bit pattern I I I I'1 I
I
I I
I i

final

bit pattern

II!I
I I
I i
! I

llli
I
I I
I i

I I

I
I

llfll
I I
I I
I I

llllil
I I
I i
I I

IIIII

L
error condition

(violates rule 4 above)

Examples:

If I is a single precision (halfword) integer

with I = 32767

then it has the bit pattern 7FFF

SUBBIT(I) = HEX'FF' ;

causes the following to occur:

16

The window of the SUBBIT is 16 bits wide opening

all of I. The bit string to be assigned into I is

expanded to 16 bits:

00FF
16

The value of I thus becomes FF

decimal notation.

i
i SUBBIT(I) = HEX'FFFFFFFF';
I

causes the following to occur:

or I-= 255 in
16

21-22

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

%,

The bit_string to,be assigned into I must now

be truncated to FFFFI6 to match the width of the

window. The value o_ I thus becomes FFF_6 or
I E -i.

If I initially has its original value

!

! SUBBIT (I) = HEX'7E';
iS 13 TO 16

then the following occurs:

The SUBBIT w_ndow is 4 bits wide. The bit string

is thus truncated from 7E16 to E._. This value is
assigned through the window intoXbI which thus

becomes 7FFEI6 , or I E 32766.

IE

SUBBITWITHCHARACTERARGUMENT

Instances of SUBBIT,pseudQ_conversions with:argmments of

character type are even more complex_han the foregoing,

since a SUBBIT with no subscript has a differen_behavior

than one with a subscript. Again the rules are summarized

separately for reference and assignment contexts.

• REFERENCE CONTEXT

If an unsubscripted SUBBIT pseudo-conversion has a character

argument whose working length is less than the implied

constant window width, then the bit pattern is left padded

with zeroes to fill the gap. If a subscripted SUBBIT pseudo-

conversion has a character argument, and the specified window

lies partly or wholly outside the range of the current value

of the argument, then an error condition arises.

Examples:

If C is a character string of maximum length 4

and C - 'AB'

then

SUBBIT(C) - 0000CIC2 *
16

* Using EBCDIC character codes.

21-23

INTERMETRICSINCORPORATED'701 CONCORD AVENUE-CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

SUBBITI TO 16 (c) H CLC216

SUBBITI TO 24 (C) is illegal because the working
length of C is too short.

• ASSIGNMENT CONTEXT

If an unsubscripted SUBBIT pseudo-conversion has a character

argument whose working length is less than the implied

constant window width, then the window is shortened to the

working length, causing truncation of the value being

assigned into the argument. If a subscripted SUBBIT pseudo-

conversion has a character argument, and the specified window

lies partly or wholly outside the range of the current value

of the argument, then an error condition arises.

Example s :

If C is a character string of length 4 with

C _ 'AB' initially,

then

!
! SUBBIT(C) = HEX'FIF2F3F4';
i
I

causes shortening of the window to 16 bits.

The bit string to be assigned into C is therefore

truncated to F3F416 and hence finally C _ '34'*.
I
i
l SUBBIT (C) = HEX'FIF2F3F4';
iS 1 TO 8
I

causes the first 8 bits of C to be replaced by F4.

Hence finally, C E 'AB'.
I
I
i SUBBIT (C) = HEX'F1F2F3F4'; is illegal.
iS 1 TO 24
i

* Using EBCDIC character codes.

21-24

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

RESTRICTIONSON USE OF SUBBIT

The on__ assignment context in which SUBBIT may appear is
an assignment statement. Other such contexts where SUBBIT

is illegal include READ statements, and ASSIGN argument
lists.

In reference context, SUBBIT may be used anywhere that a

bit string expression is legal.

21-25

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

22, ADDITIONAL INPUT/OUTPUTFEATURES

This section is supplementary to Section 12 of Part I

of the Guide, which introduced sequential I/O and the

HAL/S READ and WRITE statements. Two topics are covered
here.

Discussion of sequential I/O is concluded by

a description of a second mode of input imple-

mented by the READALL statement.

• Random-access I/O using FILE statements is
described.

22,1 THE READALL STATEMENT

Section 12.3 described how data could be read from an

I/O device into specified data items. It was stated that

the input stream is considered to be divided sequentially

into data fields each containing a value to be input. Input

of each value is accompanied by a conversion appropriate

to the data item receiving the value.

It is often important to be able to read the input data

stream as a continuous sequence of characters, without

division into fields, and without type conversion, thus

leaving it to the programmer to decode the information in

any desired way. This ability is provided by the HAL/S

READALL statement.

22-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

The READALL statement is an executable statement causing

input of data from an unpaged* I/O device• Its form

is as follows:

i vat I, var 2 ni u_ ;, READALL (n) ,
I

i. n is the channel code number, and

lies in the range 0 4 n _< 9**.

• Each vat is a data item of charac-

ter type, or a structure whose

terminal nodes are exclusively

of structure type, and optionally

subscripted•

• The list of data items may be

arbitrarily long. Alternatively,

no list need be supplied•

• The specified device reads values

into each data item in turn from

left to right.

* See Section 12.1 for definition.

** This value may vary between implementations.

appropriate User's Manual•

See

22-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

In execution the sequence of events is as follows:

If the READALL statement is the first to be

executed for the specified device, the device

mechanism positions itself at column 1 of line

i. Otherwise, it moves down one line from its

current position and repositions itself at

column i.

The device begins reading into the first element

of data specified by the list, stopping when the

character string reaches its defined maximum length,

or when the end of the line is reached, whichever

happens sooner.

The device then begins reading into the second

element specified by the list, resuming from

the next column of _he line, or if the end of it was

previously reached, from column 1 of the next line.

The stopping condition is as before.

The device continues reading as described above

until all the data items in the list have been

filled.

• This behavior is unaffected by the contents of

the input stream.

If no list of data items is supplied in the READALL

statement, the device merely performs its ini£ial

positioning.

DATAFORMATS

No conversions occur during input, the input stream appearing

unaltered in the data items constituting the READALL list.

The order of reaching into arrayed character items, and

into structures, is in conformity with the rules given in

Appendix C.

22-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

Let Cl be a character string of maximum length 70

and C2 be a character string of length 20

Then

READALL(5) CI, C2;

using the following data:

(_ _ _(last column)

ABXl 5CDE MNOPQRSTUVWXYZ

%@, #AZX? !PQ987654321 :<=

INITIAL POSITION

OF DEVICE

MECHANI SM

would result in

C1 _ 'ABXI5CDE MNOP'

C2 H 'QRSTUVWXYZ'

(maximum length reached)

(end of line reached)

If C1 had a maximum length of 80

then the same data would have resulted in

C1 5 'ABXI5CDE MNOPQRSTUVWXYZ'

C2 H '%@,#AZX?!PQ987654321'

22-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DEVICEMECHANISMPOSITIONING

Section 12.4 described how the pseudo-functions SKIP,

LINE, COLUMN, and TAB could be used to position a device

mechanism of an unpaged device explicitly during input.

.... _ can be used in the READALL statement

in exactly the same way with identical effect.

DEVICEATTRIBUTES

In determining whether by default a device is characterized

as paged or unpaged according to the rules of Section 12.5,

a READALL statement is equivalent to a READ statement.

22.2 RANDOMACCESSINPUT/OUTPUT

Random access input/output consists of writing records on

a device, or reading then from a device, in arbitrary or

random order, rather than sequentially.

HAL/S implements random-access I/O by means of the FILE

statement, which has the form of an assignment, and handles

either input or output, depending on the form in which it is
written.

This section introduces the HAL/S concept of random-access

I/O and goes on to describe the form and use of the FILE

statement.

HAL/S RANDOM-ACCESSCONCEPTS

Random access I/O is thought of as taking place via a

number of "channels" each connected to a random-access device,

and identified by an integer code. (The channels and devices

are taken to be conceptually and physically separate from

the corresponding sequential I/O channels and devices).

22-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Each device "saves" and "retrieves" data divided into

records, which depending on the implementation may be orf

fixed or varying length. Each record possesses a unique

"record address" assigned to it when the record is saved

on the device. The record is retrieved by accessing the

device with the same record address.

The format of data saved on the device is implementation

dependent, but is generally taken to be in a binary core

image form.

Execution of a HAL/S FILE statement causes the specified

device to save or retrieve one record* of data whose

record address is also specified.

The saving of a record is caused by executing

a "write-mode" FILE statement.

• The retrieving of a record is caused by executing

a "read-mode" FILE statement.

A conceptual HAL/S record may or may not be equivalent

to a "logical record" of a particular operating system

on a particular machine.

22-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

WRITE-MODEFILE STATEMENT

The write-mode FILE statement is used to save a record

with a given record address on a specified random-access
device. Its form is as follows:

1

.

.

,a FILE (n, add_s) = £zp;
I

n is the channel code number of the

specified device, and is an integer

in the range 0 Z n _ 9*.

add_6 is an unarrayed integer

expression whose resultant value

is the record address, and must

be a legal address for any given

implementation.

exp is an expression of any of the

following types:

INTEGER BIT STRING

SCALAR CHARACTER

VECTOR STRUCTURE

MATRIX

(or BOOLEAN)

and possibly possessing arrayness
in the sense of Section 20.2.

This value may vary between implementations.

appropriate User's Manual.

See

22-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The action of the write-mode FILE statement is to save

the value or values of the expression on the right of

the assignment as one record with the specified address,

on the specified device.

Examples:

S

STRUCTURE Q :

1 QA CHARACTER (80),

1 QB SCALAR,

1 QV VECTOR(9) ;

DECLARE ZQ Q-STRUCTURE (20) ;

DECLARE P ARRAY(1000) SCALAR;

FILE (I, I) = ZQ

i0 TO 20

FILE (2, I+2) = P;

FILE(l, 160) = SIN(ZQ.QB);

5

22-8

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

READ-MODEFILE STATEMENT

The read-mode FILE statement is used to retrieve a record

with a given record address from a specified random-access
device. Its form is as follows:

.

•

•

vaAL = FILE (n, cu/dALess) ;

n is the channel code number of the

specified device, and is an integer

in the range 0 _< n _< 9*.

addr_6 is an unarrayed integer

expression whose resultant value

constitutes a record address of an

existing record on the device.

vat is a subscripted or unsubscripted

data item of any of the following

types:

INTEGER

SCALAR

VECTOR

MATRIX

BIT STRING (or BOOLEAN)

CHARACTER

STRUCTURE

If it is of structure type, it may

possess multiple copies, else it may

be arrayed.

* This value may vary between implementations.

appropriate User's Manual.

See

22-9

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The action of the read-mode FILE statement is to retrieve

the value or values in the record with the specified address

and assign them into the data item on the left of the

assignment.

Various restrictions are placed on the kind of data item

appearing in a read-mode FILE statement.

Input parameters are excluded.

Bit string and character types may not possess

component subscripting.

Partitioning component subscripting on vector

and matrix data items is illegal.

Partitioning array subscripting on arrayed

data items is illegal.

Partitioning structure subscripting on structure

terminals or minor structures is illegal.

Examples:

S

S

S

S

S

S

STRUCTURE Q :

1 QA CHARACTER(80),

1 QB SCALAR,

1 QV VECTOR(9) ;

DECLARE ZQ Q-STRUCTURE (20) ;

DECLARE P ARRAY (i000) SCALAR;

ZQ = FILE(I,I) ;

ZQ = FILE (2, J+l) ;

1 TO i0

P = FILE (i, I+5) ; _ illegal array subscripting

1 TO 500

ZQ.QA = FILE (i, 140) ; • illegal component subscripting

i;i

ZQ.QV = FILE(I,150) ;

10;2

ZQ.QV = FILE (i, 160) ;_--illegal component subscripting

i0;i TO 2

ZQ. QB = FILE (i, I-i) ;_ illegal structure subscripting

10 TO 15

22-10

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Other restrictions due to the

DENSE attribute of a data

item are enforced•

See: Spec./10.2

COMPATIBILITY OF FILE OPERATIONS

It has been stated that when a write-mode FILE statement

causes a device to save a record, the data saved is in

general a binary image of the valued specified in the

statement. Because of this there is inherently no

protection against retrieving the data by a read-mode FILE

statement and assigning it to a completely different type

of data item. It is the user's responsibility to ensure

that the intelligibility of data is maintained.

The behavior of a FILE statement when the size of the

binary image of the data item or expression is different

from the length of the record accessed, is implementation

dependent•

Examples:

DECLARE A ARRAY(1000) SCALAR,

A1 ARRAY (i000) SCALAR,

B ARRAY(1000) INTEGER DOUBLE,

C ARRAY(1000) BIT(32),

D ARRAY(10) CHARACTER(4) ;

FILE(I,1) -- A;
o_: FILE (i, l)
f

FILE(l,2) = B;,

C = FILE (i, 2) ;__--'_

FILE (i, 3) = A;

D = FILE(I,3) ; •

compatibility assured since A and A1

are alike.

C will contain the bit patterns of B

in an implementation where double

precision integers occupy 32-bits.

D will contain implementation dependent

garbage: error condition might occur if

the binary range of record 3 is too long
to be contained in D.

22-11

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

23. REALTIMEPROGRAMMING- II

Section 13 of Part I of the Guide introduced some of the

simpler aspects of HAL/S real time programming concepts.

Real time processes, and their creation and execution by

means of the SCHEDULE statement were described.

This section explains how real time processes can be

created by invoking program blocks instead of task blocks,

and the resulting implications when referencing one program
from another.

This section also describes how real time processes can be

scheduled to execute cyclically, and how cycling of execution

can be arrested by means other than executing a TERMINATE

statement.

23,1 PROGRAMPROCESSES

Section 13.1 explained that at run time, the dynamic counter-

part of a HAL/S program is a real time process executing

under control of a Real Time Executive (RTE). It stated

that this "primal process" could create other processes

whose static counterparts are task blocks embedded in the

program block. However, it is also possible to create

processes whose static counterparts, rather than being task

blocks, are other program blocks. In order to avoid confusion,

in the remainder of this Section the program block corresponding

to the primal process will be called the "primal program".

The program blocks which are invoked by SCHEDULE statements

causing the creation of new processes, are the same in every

respect as the primal program block: they are separately

compiled blocks of code. The scheduling of program processes

therefore requires the bringing together of a number of

compilation units at run time*.

The object modules resulting from their compilation have

to be "link-edited" to produce a single executable load

module. The way in which the primal program is distinguished

from the others in such a load module is extra-lingual and

implementation dependent.

23-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Th_s situation is analogous to the invocation of external

procedures and functions as described in Section 15, and

is shown pictorially below:

I PRIMAL PROGRAM

TASK BLOCK

TASK BLOCK

INVOCAT ION

OF TASK

BLOCKS

ml

ml

PROGRAM

TASK BLOCK

__INVOCATION OF
TASK BLOCK

INVOCATION OF

PROGRAM BLOCK

• [PROG

REFERENCES

INVOCATION

OF PROGRAM

BLOCK

COMPOOL

(shared data)

23-2

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A program may invoke any other program in the same assemblage

of compilation units, or invoke any task block within itself,

in order to create a new process. The programs will probably

need to share data in one or more compools, and may also

share the use of comsubs (not shown)*.

Any program which creates a program process, or otherwise

controls its execution, perforce contains references to

the program block which is the process' static counterpart.

The first program must, under these circumstances, be provided

with a block template of the program block referenced.

The program template is included in the compilation unit

of the first program, in the same way as if it were a

compool or comsub template.

Interfaces with compools and comsubs have been described

in Section 15.

23-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Expanding the example given above, the location of

program templates is as shown below:

I

PROGRAM

COMPILATION

,,

i, ', , \
/

II 1,, __ \
,, , I -------_-

i, , . 0C I I
i

" ', _ / I TEMPLATE 1

I ' PROGRAM L:'

1
:
1
1
1
I
l
I_

_ REFERENCES

P ROGRAM

TEMP LATE

COMP00L

TEMPLATE

PRI_L

PROGRAM

,
TASK 1

BLOCK

I

COMP00L _ I
COMPILATION

UNIT

COMPOOL

23-,4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

External procedure and function blocks, as well as program

blocks, may contain SCHEDULE statements for creating

processes. However, because external procedure and function

blocks may not contain task block definitions, only program

processes may be created thereby.

To ensure correctness of version, program templates would

be subject to the same implementation dependent software

management scheme as for compool and comsub templates
(see Section 15.1).

23,2 PROGRAM TEMPLATES

If a program template is included with a compilation unit,

then that compilation unit may invoke the corresponding program

to create a new real time process.

A program template differs in the following respects from

its corresponding program:

• the body of the block is empty;

the opening statement is modified as shown by

the keyword EXTERNAL.

1

/abe/ : EXTERNAL PROGRAM;

labeZ is the name of the corresponding

program.

23-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Example :

program block :

ONE : PROGRAM;

DECLARE I INTEGER;

I = I + i;

CLOSE ONE;

corresponding program template:

I
I ONE: EXTERNAL PROGRAM;
! CLOSE ONE ;

23,3 CREATINGAND CONTROLLINGPROGRAMPROCESSES

Processes created by invocation of a program differ very little

from processes created by invocation of a task block•

• A program process is created by a SCHEDULE state-

ment precisely as described in Section 13.4.

A program process is forced into the inactive

state and removed from the process queue by means

of the TERMINATE statemen_ as described in Section

13.5.

A program process may be forced into the waiting

state by execution of a WAIT statement, as described

in Section 13.5.

The priority of a program process may be updated

by the UPDATE PRIORITY statement, as described in

Section 13.5.

23-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The major state of a program process may be

ascertained by using the name of the process

as a Boolean variable, also as described in
Section 13.5.

Only the notion of process dependency as used in the

constructs mentioned, need be updated to allow for the

existence of program processes.

PROGRAMPROCESSESAND PROCESSDEPENDENCY

Section 13.1 introduced the concepts of the dependency of one

process upon another. The basic notion of dependency still
stands:

When a process A creates process B, the latter may be

specified as "dependent" on the former, or "independent"

of it. If B is dependent on A, then it depends for its

existence on the existence of A. If B is independent of

A, then A may cease to exist without affecting the existence
of B.

If B is a program process, this is always unequivocally true.

However, if B is a task process, as stated in Section 13.1,

there exists an overriding rule. Reinterpreted, this rule

states that a task process C, however created, is always

dependent on the program process whose static counterpart
contains the task block whose invocation caused C to be

created.

23-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

I
I
I
!

d4"

D : EXTERNAL PROGRAM;

CLOSE D ;

h

A: PROGRAM;

B : TASK;

CLOSE B ;

I

C: TASK;

SCHEDULE B...

SCHEDULE D...

CLOSE C;

SCHEDULE C

CLOSE A;

PROGRAM

COMP I LATI ON

UNITS

I
D: PROGRAM;

E: TASK;

CLOSE E;

4---------
SCHEDULE E

CLOSE D;

I \

I %
I

' \
I
l PRIMAL PROGRAM
I

_e
I
I
I
I
I
I
I
I
I

A is the primal process; execution of SCHEDULE statements

at b, c, d, and e cause the creation of other processes

designated INDEPENDENT by default as follows:

primal

process@

c

e

23-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

By the rules given above, only D is a truly independent

process (apart from the primal process, to which the

concept does not apply).

Although B is independent of C, both B and C are in

actuality dependent on A. E is in actuality dependent
on D.

23,4 CYCLICPROCESSES

Hitherto, a real time process has been characterized as

being in the active state for some duration, wherein it is

either ready, executing, or waiting. As described in

Section 13.3, such a process finally returns to the inactive

state when one of two conditions are met:

• the process is terminated by a TERMINATE statement.

execution reaches a RETURN or CLOSE of the related

static program or task block.

In either circumstance, the process makes only one pass

through the HAL/S code contained in the related program or

task block. Subsequent passes through the same code

would thus require the scheduling of a new process for each

pass. Because of the uniqueness requirement stated in

Section 13.4, each new process could only be created when

the previous one returned to the inactive state.

To avoid the burden of continual intervention otherwise

required to maintain cyclic execution of a program or task

block, HAL/S supports cyclic real time processes. Cyclic

real time processes are created by an extension of the
SCHEDULE statement described in Section 13.4. Without

further intervention, the process will, during execution,

make an arbitrary number of passes through the code in

the related program or task block until some predetermined

condition is met.

23-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661 - 1840

STATES OF A CYCLIC PROCESS

The possible states of a cyclic process are the same as

those of a non-cyclic process, as described in Section 13.1.

When a cyclic process is created invoking a program or task

block from a SCHEDULE statement, the process makes a

transition from the inactive state to the active state. It

is entered on the process queue in the ready or waiting state,

according to the same criterion as for a non-cyclic process.

When the cyclic process is first elevated to the executing

state by the RTE, it begins the first pass through the code

of the related program or task block. Unless otherwise

prevented, execution will eventually reach a RETURN or CLOSE

statement in the block, whereupon the process will go into a

waiting state until predetermined conditions for the beginning

of the next cycle are met. At the expiration of this waiting

period, the process is returned to the ready state. The

relative priority of the cyclic process then determines when

the next cycle of execution begins.

A cyclic process can return to the inactive state in one

of two ways:

by being terminated through execution of a

TERMINATE statement;

by being "cancelled" at the end of the current

cycle of execution, either because some pre-

specified condition is met, or through the execu-
tion of a CANCEL statement.

The implications of "cancellation" as opposed to termination

will be examined in Section 23.6.

23-10

NTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

23,5 SCHEDULESTATEMENTFOR CYCLICPROCESSES

The form of a SCHEDULE statement for creating cyclic

processes is an extension of that for creating non-cyclic

processes. The cyclic SCHEDULE statement conveys two
additional items of information:

• a condition for starting each new cycle of

execution;

• a cancellation condition.

There are several versions, depending on the way in which

the above conditions are specified.

23-ii

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

IMMEDIATERECYCLING

The simplest version of cyclic SCHEDULE statement is one
in which a new cycle of execution of the process is specified

to start immediately after the end of the previous cycle.

This form is shown below:

it

.

.

•

m

SCHEDULE We/ __on, REPEAT UNTIL _mz;

A process called _be£ is created from

the corresponding program or task

block.

i_on specifies a priority, and

optionally an initiation condition

and dependency of the new process,

as described in Section 13.4.

The keyword REPEAT signifies that the

process is to be cyclic. By default

one cycle is to follow another with

no interval in the waiting state.

UNTIL time specifies a cancellation

condition. I/me is a scalar expres-

sion which when evaluated at the

time of schedulin_ gives the time

in seconds* at which the process
is to be cancelled.

If the UNTIL phrase is absent, execu-

tion cycles indefinitely until inhibi-

ted by other means.

* After the real time origin.

23-12

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138"(617) 661-1840

Cancellation actually takes place at the end of the first

cycle which finishes later than the specified time.

Example:

i

! SCHEDULE A AT 1600 PRIORITY(50);I
I

a non-cyclic schedule statement creating a process
A to be initiated 1600 seconds after the real time

origin._

f

' SCHEDULE B AT 1600 PRIORITY(50), REPEAT UNTIL 3200;
I

a cyclic schedule statement creating a cyclic process

B to be initiated 1600 seconds after the real time

origin, and to cease cycling at the end of the first

cycle completed after 3200 seconds.

The state transitions of these processes are illustrated

diagrammatically below:

A

1600
&

transitions_

during
execution

--'_ L initiated

scheduled terminated

executing

ready

waiting

- inactive

B

1600

U
schedul

3200

cycle n

executing

ready

-- --waiting

--- inactive

1
terminated

23-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661 1840

Note that the following case causes a run time error:
I
i
I SCHEDULE C AT 1600 PRIORITY(50), REPEAT UNTIL 1000;
f

because the initiation time is later than the time at which

cycling is to cease.

CONSTANTINTERCYCLEDELAY

The second version of cyclic SCHEDULE statement specifies

a constant delay between cycles of execution. This form

is shown below:

I SCHEDULE LabzZ Zn_on, REPEAT AFTER d_ UNTIL Z/mz;
I

i. A process called _b_ is created from

the corresponding program or task

block.

. The meaning of ZniIi_t_on and lime

are the same as for the previous

version of cyclic SCHEDULE statement.

0 AFTER dzf_ specifies a constant de-

lay between the end of one cycle of
execution and the start of the next.

de/ny is a scalar expression whose

value at the time of scheduling

specifies the delay in seconds.

Cancellation takes place in the same way as before, with

the provision that if the cancellation condition is

met in the interval between cycles, cancellation takes

place immediately.

23-14

INTERMETRICSINCORPORATED.701CONCORDAVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

Example:
I
I SCHEDULEA AT 1600 PRIORITY(50) , REPEAT AFTER 100 UNTIL 3200;I

A cyclic process A is scheduled, specifying a delay

of 100 seconds between cycles of execution. The state

transitions of this process may be illustrated diagram-
matically as follows:

A

1600 i00

i tr_sitions t

i during /

_cle 1

initiated

scheduled

i00

cycle n

3200

b..executing

__'_ ready

[_ _iiiiiiie

J
terminated

23-15

INTERMETRICS INCORPORATED "701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

RECYCLINGAT SPECIFIEDINTERVALS

The third and last version of cyclic sCHEDULE statement

specifies that each new cycle is to start a fixed inter-

val of time, after the start of the previous cycle. This

form is shown below:

I SC_DU_ fab_ i_on, _PEAT EVERY /n_2Av_ UNTIL Z/mz;
!

i. A process called /abe/ is created

from the corresponding program or

task block.

. The meaning of i_on and time

are the same as for the previous two

versions of the cyclic SCHEDULE

statement.

o EVERY d£Z_y specifies that each

cycle is to start a given interval

after the start of the previous

cycle, d_ay is a scalar expression

whose value at the time of schedulin@

specifies the interval in seconds.

Cancellation takes place in exactly the same manner as with

the previous version of the SCHEDULE statement.

23-16

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

Example:

! SCHEDULE A AT 1600 PRIORITY(50), REPEAT EVERY 200 UNTIL 3200;!
J

A cyclic process A is schedule, specifying that cycles

are to succeed each other at intervals of 200

seconds. State transitions may be illustrated diagram-

matically_as follows:

A

1600

_ 200 J7 1 200

transitions

during
execution

I

initiated

scheduled

3200

cycle n

terminated

:., executing

l
.-----ready

---waiting

inactive

Note that if a cycle takes longer than 200 seconds

to execute, the next cycle cannot start on time and

a run time error occurs.

An UNTIL phrase can also be

used in a non-cyclic

SCHEDULE statement.

See: Spec./8.3.

23-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

23,6 TERMINATINGAND CANCELLINGCYCLICPROCESSES

When a cyclic statement is terminated by execution

of the TERMINATE statement described in Section 13.5,

both the process and its dependents are terminated,

possibly in mid-cycle.

Cancellation is a more graceful way of termination. It

cannot occur when a process is in mid-cycle. Further,

when a process is cancelled, its dependents are not

terminated immediately: the following happens instead:

• non-cyclic dependents are allowed to execute until

their normal termination;

• cyclic dependents are allowed to finish their

own current cycle of execution.

The process being cancelled is put in a waiting state until

all its dependents have become inactive; it then becomes

inactive itself.

Cancellation conditions in SCHEDULE statements cannot be

dynamically modified. To cancel a cyclic process arbitrarily,

the CANCEL statement must therefore be used.

CANCELSTATEMENT

A CANCEL statement specifies the cancellation of a process•
Its form is as shown below:

l.

•

!
I CANCEL Zabef;
I

The appearance of _zbeZ is optional•

If present, the statement causes

cancellation of the active process
called 2mbeZ.

If ZabeZ is absent, the process

executing the CANCEL statement is
itself cancelled.

23-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBR DGE MASSACHUSETTS 02138 • (617) 661-1840

The effect of a CANCEL statement is as follows:

If the process has not yet been initiated,

it is terminated and removed from the process

queue.

If the process is in a cycle of execution,

it is cancelled at the end of the cycle.

If the process is waiting between cycles, it is

cancelled immediately.

CANCEL statements can actually be applied to non-cyclic

processes, but unless the process has not yet initiated

they have no effect. If the process has not been initiated,

the process is removed from the process queue, just as if

it were cyclic.

Examples:

I
! CANCEL;

I CANCEL BETA;

self cancellation

If a number of processes are to be cancelled

simultaneously, the CANCEL statement can specify

a list of process names:

CANCEL ALPHA, BETA, GAMMA;

23-19

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

24, REALTIMEPROGRAMMING- Ill

This section concludes the description of HAL/S constructs

for real time programming, which was begun in Section 13

and continued in Section 23. The remaining topic of

discussion is a HAL/S construct called the "event", and

its use in real time programming.

The original idea behind the HAL/S "event" was that it

should serve as an interface between HAL/S software and

hardware interrupts; that is, the medium through which the

arrival of interrupts would be signalled to the HAL/S

program. Hence, the HAL/S "event" was conceived as a

Boolean-valued data item, normally FALSE in value, but

either becomes transiently TRUE, or latching TRUE, on the

arrival of the interrupt*. The assumption was that the

values of "events" at any given time could control the

execution of real time processes by the RTE.

An extension of this idea was the definition of the

ability to simulate the arrival of interrupts by changing

the values of "events" within the HAL/S software itself.

However, the underlying operating systems of most machines

do not allow for interfaces with interrupts of the above

nature. Hence, the simulation property of "events" has

become their major role: the ability to signal a software

condition in one real time process asynchronously to other

processes by use of HAL/S "events" has become a real time

programming tool of considerable importance.

Clearly, there would need to be some extra-lingual, imple-

mentation dependent way of relating particular "events"

to particular hardware interrupts.

24-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

24,1 HAL/SEVENTS

A HAL/S event is a Boolean-valued data item whose value

is visible at any instant to the RTE. Except for this

latter qualification, whose importance will be appreciated

later, an event differs little from the Boolean data item

first introduced in Section 4 of Part I.

A HAL/S event may optionally possess a "latching" property:

• An event with the latching property may be set

in value to either TRUE or FALSE.

An event without the latching property is normally

FALSE in value, but may transiently become TRUE

(for an "infinitesimal" time) when so specified.

The values of events can only be changed by special HAL/S

statements, not by simple assignment.

Event expressions consisting of logical operations on event

data items can be synthesized: the instantaneous values

of such event expressions can be used to modify the activity

of the RTE in controlling real time processes. Event

expressions can be used in the following circumstances:

• in a SCHEDULE statement, to specify a condition

for initiating a process;

• in a cyclic SCHEDULE statement, to specify a

cancellation condition;

in a WAIT statement, to specify a condition for

ending the period a process is to remain in the

waiting state.

In addition, in most contexts events can be used in Boolean

or bit string expressions as if they were Boolean data items.

24-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

24,2 DECLARATIONOF EVENTDATA ITEMS

The declaration of event data items is similar to the

declaration of Boolean data items as described in

Section 4.2 of the Guide. The basic forms are as follows:

!
io

•

DECLARE name EVENT;

DECLARE name EVENT LATCHED;

In each form, name is any legal

HAL/S identifier•

The keyword LATCHED signifies that

the event is to possess the

"latching" property. Its absence

signifies that it is not to possess
it.

Examples:

DECLARE EVI EVENT;

DECLARE EV2 EVENT LATCHED;

COMPOUNDDECLARATIONS

Declaration of events may be mixed with declarations of

other data types in compound declarations:

DECLARE A SCALAR,

I INTEGER DOUBLE,

E EVENT LATCHED;

24-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The keyword LATCHED is an attribute which may be factored.

Example:

! DECLARE E1 EVENT LATCHED,

i E2 EVENT LATCHED,!
! E3 EVENT LATCHED;

may be rewritten more compactly as

DECLARE EVENT LATCHED, El, E2, E3;

INITIALIZATION

All declared event data items are implicitly initialized

to a FALSE value*. Only an event data item with the

latching property may possess explicit initialization.

It is initialized as if it were a Boolean data item, as

described in Section 4.3.

Examples:

!

! DECLARE EVl EVENT LATCHED INITIAL(TRUE) ;!
! DECLARE EV2 EVENT LATCHED CONSTANT(OFF);

(Note: a constant event is of little

use even though legal in HAL/S).

i
t DECLARE EV3 EVENT INITIAL(TRUE);
i

- illegal since EV3 is not LATCHED.

This is the only HAL/S data type which is implicitly
initialized.

24-4

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ARRAYSOF EVENTS

An event data item may be arrayed, its array property

being specified in the same way as described in Sections

4.2 and 18.1. Event arrays with the latching property may

be initialized as described in Sections 4.3 and 18.2

Example s :

I

i DECLARE E1 ARRAY(5) EVENT;I
! DECLARE E2 ARRAY(2,2) EVENT LATCHED INITIAL(4#TRUE) ;
i

EVENTSIN STRUCTURES

A terminal node in a structure may not be an event.

(See Section 19.).

24,3 EVENT EXPRESSIONS

It was stated that event data items could appear in Boolean

or bit string expressions as if they were Boolean data items.

It is possible that the operands of a Boolean expression could

solely be event data items. It is stressed that even in this

circumstance the expression is in general still taken to be a

Boolean expression. The term "event expression" is reserved for

a special purpose.

An event expression is an expression composed in general

of a series of logical operations upon event operands in

the context of a SCHEDULE or WAIT statement. The simp_st

case of an event expresslon is a lone event operand.

An event expression has the curious property that its

evaluation is under control of the RTE and may take place

more than once at times other than that of execution

of the SCHEDULE or WAIT statement it appears in.

24-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

OPERATIONSAND OPERANDS

The operations legal in an event expression _are the Boolean

operations described in Section 7.3.

sym o

AND

OR

NOT

Purpose

logical intersection

logical conjunction

logical complement

The behavior of the operations is exactly as if the

operands were of Boolean data type rather than event.

The operands in an event expression are solely event data

items. Operands which are event arrays must possess array

subscripting which selects_onef and only one, array element,

Such array subscripting is _he same as used for the selection

of array elements from Boolean arrays, and has been described

in Section 6.2 and 18.3, with the exception that the ending

colon is optional rather than mandatory.

Examples:

Given the following declarations

DECLARE EVI EVENT,

EV2 EVENT LATCHED,

EV3 ARRAY(2,4) EVENT,

EV4 EVENT;

in the contexts of SCHEDULE or WAIT statements, the

following are legal event expressions:

(EVI & EV2)IEV4

(EV2I 32,2:) --colon optional

24-6

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

The following is illegal:

EVlIEV3
• ,1 subscripting does not

_ on___eelement of EV3

The following are also illegal

EVllIEV2
EVl & TRUE

EVl IBIT 1 (125)

illegal operator

I illegal operands

Note however, that the above are legal bit string

expressions in the appropriate contexts.

select

EXECUTIONOF EVENTEXPRESSIONS

It was stated earlier that event expressions are evaluated

under direct control of the RTE, and not necessarily only

at the time of execution of the SCHEDULE or WAIT statement in

which they appear. The reason for this can now be explained.

Event expressions are placed in SCHEDULE and WAIT statements

to provide dynamic conditions for controlling the execution

of processes. On a basic level the conditions control the

transition of processes from state to state, and thus the

activity of the RTE in swapping processes.

Hence, it is appropriate to evaluate an event expression,

not only at the time of execution of the SCHEDULE or WAIT

statement it appears in, but subsequently whenever the value

of any of its event operands is modified. This is why the

values of events are visible to the RTE. Not only each

event operand, but the entire event expression has to be accessible

to the RTE so that it can perform re-evaluations when required.

If an event expression contains subscripting which has to

be evaluated at run time, then the subscript calculation

takes place only once, when the event expression itself is

first evaluated upon the execution of the SCHEDULE or WAIT

statement it appears in.

24-7

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Example:

DECLARE EV ARRAY (5) EVENT;

DECLARE I INTEGER INITIAL(l);

IS WAIT FOR EV ;I
l
t I=I+i;
l

The RTE first evaluates EV I when the WAIT statement

is executed, and thus is interested in the value of

EV 1 since IEI. Whenever the expression is re-evaluated,

it is the value of EV 1 which is examined, even though

the value of I may since have changed•

24,4 CHANGINGVALUESOF EVENTS

HAL/S uses a special terminology for the operation of

changing event values.

An event with the latching property is said to

be "set" when its value is forced TRUE, and

"reset" when its value is forced FALSE.

An event without the latching property is said

to be "signalled" when its value is transiently

forced TRUE.

These operations are carried out by the HAL/S SET, RESET,

and SIGNAL statements respectively. Changes in value of

an event data item as a result of one of these statements

is visible to the RTE for the reason outlined in Section 24.3.

24-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

SETANDRESET

The SET and RESET statements only apply to latched events,

and force their values to TRUE, and FALSE respectively. The
forms of the two statements are shown below:

l.

.

i
I SET V_;

I RESET u_%;
I

In either form, uaA is a latched

event data item. If it is arrayed,

it must possess array subscripting

causing the selection of one and

one only array element.

(See Sections 6.2 and 18.3).

SET causes the value of uaA to be

forced TRUE; RESET causes it to

be forced FALSE.

Examples:

Given

DECLARE EV1 EVENT LATCHED,

EV2 EVENT,

EV3 ARRAY(3) EVENT LATCHED;

the following are legal:

SET EVl;

RESET EV3 ;

3

whereas the following are illegal

I
I SET EV2;
I
I SET NV3;

event not latched

more than one element specified

24-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Note that the SET statement does not cause an event which

is already TRUE to change in value. Neither does the

RESET statement cause an event which is already FALSE to

change in value. Hence, the RTE does not necessarily always

sense an event change when such a statement is executed.

SIGNAL

The primary purpose of the SIGNAL statement is to cause

the value of an event without the latching property to

become transiently TRUE. However, it also has an effect

on latched events, which will be described. The form of

the SIGNAL statement is as follows:

I,

Q

e

SIGNAL u_;
L

I

u_% is any event data item. If it

is arrayed, it must possess array

subscripting causing the selection

of one and one only array element.

(See Sections 6.2 and 18.3).

If u_ does not have the latching

property, SIGNAL causes its value

to become transiently TRUE.

If v_ has the latching property,
SIGNAL causes its value to be

transiently complemented.

El

Example s:

Given:

DECLARE EVI EVENT LATCHED,

EV2 EVENT,

EV3 ARRAY (3) EVENT;

the following are legal:

Is

SIGNAL EVl;

SIGNAL EV2;

SIGNAL EV3 ;

3

24-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

whereas the following is illegal:

I
! SIGNAL EV3

IS 2 TO 3
|

because more than one array element is selected.

The SIGNAL statement always causes a change in value of an

event, so that the RTE always senses an event change when it

is executed. However, the RTE only senses the leadin 9 edge

of the transient, not the trailing edge.

Example:

If EVl and EV2 are declared thus:

! DECLARE EVI EVENT,
I EV2 EVENT LATCHED INITIAL(TRUE);
i

then when

I

!
t SIGNAL EVl;
i

is executed, EVI changes in value thus:

TRUE

FALSE
_ALSE ÷ TRUE change only

When
!
l
i SIGNAL EV2 ;
t

is executed, EV2 changes in value thus:

TRUE

FALSE

|

RTE sees TRUE ÷ FALSE change only

24-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

SUMMARY

The following table summarizes the effects of SET, RESET,

and SIGNAL statements.

Statement

SET

RESET

SIGNAL

Event

latched

latched

latched

unlatched

q
b

<

i
k

f

<

d
k

execution

T

F

T

F

T

F

T

F ------I

• , ,, ,,

--7-
<

k F

T = TRUE, F = FALSE

Actual Value

T

-- -- -- m

T

F

T

F

.... T

F

--" T

F

• T

F

T ----_ T
F --------- F

Change sensed by RTE

F + T

none

none

T ÷F

F ÷ T

T ÷F

F ÷T

24-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

24,5 EVENTEXPRESSIONSINSCHEDULESTATEMENT

Event expressions may appear in a SCHEDULE statement for two
reasons:

• to specify a condition for initiating a process;

• to specify a condition for ceasing to cycle a

process.

INITIATIONON AN EVENTCONDITION

Section 13.3 described two time conditions under which the

initialization of a process created by the SCHEDULE statement

could be delayed. A third means of delaying initiation is

to delay it pending the value of some event expression becoming
TRUE. The basic form of SCHEDULE statement for this is shown

below•

io

•

.

•

SCHEDULE 2_be/ON _p PRIORITY(e) DEPENDENT;

A process 2_b£Z is created from the corres-

ponding program or task block and placed on

the process queue.

PRIORITY(e) and DEPENDENT have the same

meanings as described in Section 13.3 for

other forms of SCHEDULE statement.

£xp is any event expression. If its value

is TRUE, when the SCHEDULE statement is

executed, the process is placed in the

ready state.

If its value is FALSE, the process is

placed in a waiting state until its value

becomes TRUE, whereupon it is transferred

to the ready state.

24-13

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Example :

Let EVI and EV2 be latched events with

EVl ---EV2 - FALSE.

After execution of

!

SCHEDULE ALPHA ON EVl & EV2 PRIORITY(50) ;
i

let first EVI then EV2 become TRUE. Then the

state transitions of process ALPHA are as shown

below -

EVI

I

Ev2 I
I

I

I

I

ALPHA_

scheduled

I
I

I I -i

TRUE

FALSE

TRUE

FALSE

*,*****,-****,,* executing

I

• , ready

waiting

inactive

\
EVl & EV2

becomes TRUE

denotes an evaluation of EVI & EV2 by the RTE.

24-14

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

CANCELLATIONOF AN EVENTCONDITION

Section 23.5 described three versions of cylic SCHEDULE

statement, in each of which the cancellation could be

specified at a certain time. There are two ways of
causing cancellation on an event condition:

• Cycling may be allowed to proceed while an

event expression remains TRUE.

Cycling may be allowed to proceed until an

event expression becomes TRUE.

• CYCLING while TRUE

The following form of cyclic SCHEDULE statement causes

cycling of execution to proceed while an event expres-
sion remains TRUE.

I
i SCHEDULE 2.zz6d i_on, REPEAT cyc/e WHILE zxp;
l

i. A process called /abe/ is created from the

corresponding program or task block.

o i_on specifies a priority, and option-

ally an initiation condition, and the de-

pendency of the new process, as described
in Section 13.4.

• cycle optionally specifies a criterion for

recycling execution as described in

Section 23.5.

• WHILE £xp specifies that cycling is to

continue while the value of £xp remains

TRUE. exp is any event expression.

. If the value of exp becomes FALSE before

the process is initiated, it is merely

removed again from the process queue, and
becomes inactive•

24-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

El

Cancellation of the process actually occurs at the end

of the first cycle in which the event expression becomes

FALSE*. If the event expression becomes FALSE in the

interval between cycles, cancellation takes place

immediately.

Example:

Given that EVl and EV2 are latched events with

EVI E EV2 _ TRUE

suppose that a cyclic process ALPHA is created

by the following statement:

i
! SCHEDULE ALPHA IN 100, PRIORITY(50), REPEAT AFTER
I
I 50 WHILE EVlIEV2 ;
I

Let first EVI and then _V2 become FALSE some time

after initiation of ALPHA. The state transitions

of ALPHA can then be illustrated diagrammatically

as follows:

TRUE

EVl !

f FALSE

I TRUE

__ |

12o2_ so so I

' J transitions___ _durin i - "-executing

I-- -- execution ready

-]k "cycle n I-...-- inactive

scheduled f _ terminated

EVl IEV2 becomes FALSE

indicates evaluations of EVlIEV2 by the RTE. If

EVIIEV2 had become FALSE before initiation of ALPHA,

the process would have become inactive without ever

executing.

* Even if it subsequently becomes TRUE again during the same

cycle.

24-16

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• CYCLING until TRUE

A modification of the above form allows cycling of

execution to proceed until an event expression be-

comes TRUE. This is not merely a simple inversion of

logic since the value of the event expression is not

allowed to take effect until after the first cycle of

execution of the process has started. In contrast

to the above form, the following modification always

allows at least one cycle of execution to be completed.

i.

0

0

!
I SCHEDULE lab_Z i_LtL_tLon, REPEAT cyc£e UNTIL ¢xp;
!

A process called lab£Ziniti_tLonis created

from the corresponding program or task block.

The meanings of i_LtimtLon and cyc£e_ are as

for the previous form of SCHEDULE statement.

UNTIL exp specifies that cycling is to

continue until the value of exp becomes

TRUE, with the provision that at least one

cycle shall be executed. ¢xp is any event

expression.

Cancellation of the process occurs at the end of the

first cycle in which the event expression becomes

TRUE*. If it becomes TRUE in the interval between

cycles, cancellation takes place immediately.

* Even if it subsequently becomes FALSE again during the

same cycle.

24-17

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Example:

Given that EVI and EV2 are latched events

with EVI E EV2 E FALSE

suppose that a cyclic process BETA is created

by the following statement:

' SCHEDULE BETA IN 100 PRIORITY(50), REPEAT AFTER 50
I

' UNTIL NV1 & EV2;

Let first EVl, and then EV2 become TRUE, some time

after initiation of BETA. The state transitions

of BETA can then be illustrated diagrammatically

as follows:

I

u "_
I

J le0M
........ i

50

TRUE

FALS E

I _ansitions I'____BETA i - --_[-Xurl_iOn

_J cycle i I

initiated
scheduled

50

TRUE

FALSE

I -- -- executing

L-- -- -- ready

i
1 - -- waiting

cycle n -------inactive

I _terminated

EVI&EV2 becomes TRUE

_indicates evaluations of EVI&EV2 by the RTE. If

EVl and EV2 had both become TRUE before initiation of

BETA, the following state transitions would have

occurred:

24-18

INTERMETRICSINCORPORATED.701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

EVl

EV2

I

I

TRUE

FALSE

TRUE

FALSE

BETA
I

I
f

scheduled

I i00

I I

t t
I
I

t
t

I transitions _ executing

during.

execution ready

--- waiting

cycle 1 inactive

initiated _terl_inated

EVI&EV2 becomes TRUE

_ again indicates evaluations of EVI&EV2 by the RTE.

Even though EVI&EV2 becomes TRUE before initiation, the

RTE postpones cancellation until the end of the first

cycle.

24-19

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

The WHILE event expression

is also allowed to appear

in non-cyclic SCHEDULE

statements.

_ee: Spec./8.3.

24,6 EVENTEXPRESSIONSIN WAITSTATEMENT

Section 13.5 explained how the WAIT statement could be

used to force a process into a waiting state until some

timing condition is satisfied. The WAIT statement can

alternatively specify an event condition. This causes a

process to remain in a waiting state until some event

expression becomes TRUE, whereupon the process returns to

the ready state.

The form of this version of the WAIT statement is as

follows:

io

2.

o

I
I WAIT FOR £xp;
I

£Xp is any event expression.

The process executing the WAIT state-

ment is placed in the waiting state

until the value of exp becomes TRUE.

If _p is already TRUE when the WAIT

statement is executed, the statement

has no effect.

Example:

Given that EVl and EV2 are latched events

with EVl E EV2 E FALSE

Suppose that
I
i
! WAIT FOR EVl & EV2;
I

is executed, and that some time later first EVI

and then EV2 become TRUE. Then the state

24-20

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS02138-(617) 661-1840

transitions of the process executing the

above statement are as shown below:

EVl

EV2
r

l I
I

J j

m

_WAIT executed

I

H
other
_nrela_ed
ransltlOnS

EVl&EV2 becomes TRUE

TRUE

FALSE

TRUE

FALSE

executing

ready

waiting

indicates evaluations of EVI&EV2 by the RTE.

24-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

24,7 EVENTS IN BOOLEAN CONTEXT

This section presents some examples showing how events

are used in Boolean or bit string context, reinforcing

the remarks made in Section 24.3.

Examples:

Given the following declarations:

I
t DECLARE B1 BOOLEAN,
i
t B8 BIT(8),

l EVl EVENT,t
i EV2 ARRAY (5) EVENT LATCHED,
I
! BI6 ARRAY(5) BIT(16) ;
!

the following are legal bit string expressions:

BIIKB8

EvIilB8

EV221 (_EVI&BI61:)

EV23 TO 511B163 TO 5: (arrayed expression)

In

I
I
i IF EVl iEV2 THEN BI = FALSE;

tS 1
I

EVlIEV21 is treated as a Boolean expression. It
is only evaluated whenever the IF statement is

executed, and is not under control of the RTE°

However, in

I
i
! WAIT FOR EVlIEV2 ;

tS 1I

EVIIEV21 is treated as an event expression as
described in Section 24.6.

24-22

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

24,8 PROCESSEVENTS

Section 13.5 stated that the name of a process could be

used as if it were a Boolean data item in order to determine

the major state of the process. The names of processes can

also be used in event expressions as if they were event

data items. In this context they are called "process events".

The truth table shows again the correspondence between

logical value and major state.

State Value

ACTIVE

INACTIVE

TRUE

FALSE

Example :

If EVl is a latched event with EVl _ FALSE

initially, and ALPHA is the name of an active

process, then

I

I WAIT FOR EVl & (_ALPHA);I
I

causes the following state transitions in a

process BETA executing the WAIT statement.

EVl

ALPHA

!

BETA

I" TRUEI
I

thr_[ated I

transitions I

I

I
I

FALSE

executing

_ ready

----waiting

J _ inactive

executing

I ready

C _ waiting
t WAIT executed EVI&(_ALPHA) becomes TRUE

24-23

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

25, ERRORRECOVERYANDSIMULATION

HAL/S compilations can be created which, although seen

as legal at compile time, violate the rules of the language

during execution*. Such violations give rise to "run time

errors". Run time errors are also produced when abnormal

hardware conditions are encountered during execution.

HAL/S has a comprehensive and flexible mechanism for

detecting and recovering from run time errors. It also

has the capability of simulating run time errors, which can

be extremely useful for checkout purposes. Another feature

of the language is the ability to specify and signal user-
defined run time errors.

This section explains how run time errors are handled as part

of the activity of the Real Time Executive (RTE) and

describes statements by which HAL/S programmers can extend

or modify this activity.

25,1 HAL/S RUN-TIMEERROR CONCEPTS

Each HAL/S implementation possesses a defined set of run

time errors which are detectable during execution. These

errors are called "system-defined" errors. The HAL/S user

may, at Will, create a certain limited number of supplementary

"user-defined" errors for his own purposes. Each run time

error, whether system-defined or user-defined, possesses a

unique numerical "error code" by which it may be referenced

in a HAL/S compilation. This error code consists of two parts:

• an error group number;

• an error member number**.

This fact is true for any language.

The classification into groups, and the assignment of error

codes is implementation dependent. See appropriate User's

Manual.

25-1

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

ERRORDETECTIONAND RECOVERY

The activity of detecting and recovering from run time

errors is handled by an Error Recovery Executive (ERE)

which in practice is part of the Real Time Executive (RTE).

For every error group, an implementation-dependent, standard,

system recovery action is defined*. On detecting an error

belonging to a certain group, the ERE takes the appropriate

system recovery action for the group, unless otherwise

directed by the user.

Depending upon the kind of error, the system recovery action

may be any one of the following:

• to execute a fix-up routine and continue;

• to terminate execution abnormally;

• to ignore the error.

ERRORENVIRONMENTOF A PROCESS

The behavior of the ERE in detecting and recovering from

run time errors must be viewed from the standpoint of HAL/S

as a real time progralmning language.

Every active real time process possesses its own so-called

"error environment", which is essentially a description of

the recovery actions in force for all possible run time

errors the process could be subject to. On initiation

of the process, the system recovery action is in force for

all run time errors. During the life of a process, its

error environment may be modified by the specification of

a "user recovery action" for some error or error group.

The user recovery action is enforced by the execution of

specific HAL/S error control statements which will be
described later.

A process may only modify its own error environment, never

that of another process.

* See appropriate User's Manual.

25-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DYNAMICSCOPINGOF ERRORENVIRONMENTS

During its execUtion, a process may invoke procedures and

functions, which may in turn invoke further procedures

and functions, and so on to an arbitrary depth of nesting.

Modifications made to the error environment during execution

of a procedure or function remain in force only until return

from it. Thus, execution of HAL/S error control statements

has an inherent dynamic scoping property.

To clarify this concept, consider the following diagram,

showing a process A invoking procedures 8 during execution,

which in turn invoke procedures C.

Modifications to the error environment made in

A remain in force for the remainder of A's

execution unless countermanded by removal or
further modification.

Modifications made in B 1 remain in force until

return from B 1 unless countermanded by removal

or further modification in B I.

Modifications made in C12 remain in force until

return from C12 unless countermanded by removal or

further modification in C12.

25-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

It is stressed that this is a dynamic scoping property,
that is not related to whether or not, for example,

procedure block C12 is physically nested inside procedure

block B 1 .

Further clarification is required in cases where more than

one process can invoke the same procedure or function. If

two processes A 1 and A 2 both execute the same procedure B
as shown below, then error control statements executed in

B affect the error environment of whichever process is

executing B.

A 1 A 2

The error environment in force for each process on

invocation of B is reinstated on return from B. There

is no cross-coupling effect between the two error environ-
1

ments.

25,2 ERRORENVIRONMENTMODIFICATION

HAL/S possesses two statements which can alter the error

environment of the process which executes them.

The ON ERROR statement modifies the error

recovery action for a particular error or

error group.

The OFF ERROR statement causes the removal of a

previously-applied modification for a particular

error or error group.

Both statements have an identical construct for representing

the error group and member numbers involved.

25-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ERRORGROUPANDMEMBERNUMBERSPECIFICATION

Error group and member numbers appearing in the HAL/S

ON ERROR and OFF ERROR statements are specified by

appropriately subscripting the keyword "ERROR". Three
basic forms exist. Each form is dealt with in order

of decreasing generality.

• SPECIFICATION OF ALL ERRORS

To specify all errors, the keyword ERROR, with-

out subscript, is used:

l.

ERROR

Lack of subscript implies all

members of all error groups.

SPECIFICATION OF ALL ERRORS IN A GIVEN GROUP

To specify all members in a given error group

the following form is used:

ERROR
m:

i. m is an unsigned integer literal.

2. All members in group m are

specified.

3. The colon is optional.

25-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

SPECIFICATION OF A GIVEN ERROR

To specify a given error member of an error

group, the following form is used:

l.

2.

ERROR
m:n

m, n are unsigned integer literals.

Error member n in group m is

specified.

ON ERRORSTATEMENT

The ON ERROR statement is used to modify the error environ-

ment with respect to the error or errors specified. The

statement can modify the error environment in the following

ways:

by causing the error or errors to be

ignored; CASE Q

by causing the standard system recovery

action to be taken; CASE Q

by causing execution to branch to specified

HAL/S code on occurrence of the error CASE Q

In addition, in the first two forms, the va_ue of an event

data item can be changed on occurrence of the error or errors.

An ON ERROR statement may specify system-defined or user-

defined errors*.

For reasons of software security, some implementations

may prohibit the modification of the error environment

with respect to certain errors. See appropriate User's

Manual.

25-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

WT% f2_
CASES : SYSTEMAND IGNOREACTIONS

The basic form of the ON ERROR statement is as

shown below:

l•

•

•

I
! ON Specification SYSTEM;
!
! ON Spe6ific_tion IGNORE;

spe_fication is an error specification

of the form previously described.

The keyword SYSTEM states that stan _

dard system recovery action is to

take place.

The keyword IGNORE implies that

errors specified in the specification
are to be ignored•

Examples:

!
I
I
I
i
I
Is
!
!
I

Is
I
!

ON ERROR SYSTEM;
_ revert to standard system

recovery action for all errors.

ON ERROR IGNORE;_._._____ignore error member 4 in
1:4 -_ group i.

ON ERROR

3
SYSTEM;_.._.___ _ revert to standard system

recovery action for all

errors in group 3.

25-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If the value of an event is to be changed in addition

to the actions specified above, one of the following

clauses is added after the keyword SYSTEM or IGNORE.

i •

o

• .. AND SET u_ ...

• .. AND RESET _u_...

•.. AND SIGNAL u_...

SET, RESET, and SIGNAL have the same

actions as described in Section 24.4

of the Guide•

If u_ contains run time subscript

evaluations, they are carried out

at the time of execution of the

ON ERROR statement rather than on

the occurrence of the specified

error or errors•

On the occurrence of an error covered by the error

specification, the value of the specified event data

item is modified before the SYSTEM or IGNORE is

taken by the ERE.

Examples :

ON ERROR IGNORE AND SET EVl;

ON ERROR SYSTEM AND SIGNAL EV2 ;

i:i 5

ON ERROR SYSTEM AND SIGNAL EV3 ;

5 I

I is evaluated on execution of

the ON ERROR statement, not on

occurrence of an error in group 5.

25-8

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CASE Q: USER-SUPPLIED ACTION

The user can supply the action to be performed on

an error occurrence by means of the following form
of ON ERROR statement•

i
! ON specification stat_ent;
!

i. Spe6ifieation is an error specifica-

tion in the form previously described•

2. statement is an executable HAL/S
statement with which execution is

resumed after occurrence of the

specified error condition•

3. statement may possess a statement label
but cannot be branched to from outside

the ON ERROR statement.

4. This kind of ON ERROR statement may not

form by itself the "true part" of an

IF statement. (See Section 9.1).

It is important to understand the flow of execution

implied by the above form, both when the ON ERROR is

executed, and on the occurrence of an indicated error•

The following example shows this in detail•

Example:

ON ERROR DO;

5:1

NN
END ;

user-supplied error recovery

action is this entire DO...END

group•

I = I+i;

_---7..---- error 5:1 occurs.

25-9

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The path of execution is shown by the following

symbolic flow diagram:

I

I

I
modify
ERE's

_ction for

error 5 :1

Set

I=I+l

lenderO0
execute

body of

DO... END

Iexit IDO... END

I

I
I

I nodal continuance

_of execution

i ERE redirects

flow of execu-

tion

occurrence of ____

error 5:1 \

\

ERE

/

/

The above example assumes that there is no branch in

the DO...END group to cause execution to be diverted.

25-10

INTERMETRICSINCORPORATED.701CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138- (617) 661-1840

OFF ERRORSTATEMENT

The OFF ERROR statement is used to remove the effects

of an ON ERROR statement with the same error specification,

previously executed by the same process in the same block

of HAL/S code. Its form is as follows:

Ze

•

Be

! OFF Specification ;J
i

Specification is an error specification

of the form already described•

The statement nullifies the effect of

an ON ERROR statement previously

executed in the same code block by

the same process, and with the same

s pe6i fic_ut_on•

The statement has no effect if such

an ON ERROR statement does not exist•

Example:

ON ERROR

S 5:6

OFF ERROR

S 5:6

IGNORE;

this nullifies action of

previous ON ERROR statement

25-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

PRECEDENCEOF ONANDOFF ERRORSTATEMENTS

Some additional information needs to be supplied in order

to understand in detail how successive execution of

several ON and OFF ERROR statements modifies the error

environment of a process.

In general, an executing process A is executing code in

some block seve=al nesting levels of invocation deep, as

illustrated below:

C

A invokes _ invokes C

The ERE keeps continuously updated lists of all error

environment modifications in force at any instant of

time*. When execution of the process A described above

is in the body of block C, the ERE possesses three

linked lists of ON ERROR modifications, each corresponding

to a block not yet returned from:

This description of the ERE's behavior is representa-

tional only: an actual implementation of the ERE may

employ different algorithms producing the same result.

25-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ERE's lists of

error environ-

ment modifica-

tions

When block C is returned from, LIST C is deleted, leaving
LIST A and LIST B in force. When block B is returned

from, LIST B is deleted leaving only LIST A in force.

Each list is divided into three sublists as illustrated

below for LIST C:

I LIST C

/
/

/
/

/

I.

/
/ sublist C 1

sublist C 2

sublist C 3

___modification applic-able to all errors

modifications for

given error group

modifications for
given error code

25-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• Sublist C 3 contains modifications generated

by ON ERROR statements of the form:

ON ERROR • o o . •

m:n

• Sublist C 2 contains modifications generated

by ON ERROR statements of the form:

ON ERROR
m

Sublist C 1 can contain at most one entry,

the modification generated by an ON ERROR

statement of the form:

ON ERROR

If a new ON ERROR statement in block C is executed, then

one of the following happens:

if an entry in the appropriate sublist exists

for the given error specification, the entry is

replaced with the new information gained, thus

erasing memory of the previous recovery action

specified;

• otherwise a new entry is added at the end of

the sublist.

With this background, the behavior of the ERE in recovering

from a run time error can now be described in more detail.

Suppose that a run time error occurs while execution is in

block C. On detecting the error, the ERE gains control and

scans backwards through the lists until it finds an entry

applicable to the error which occurred. The ERE may find

such an entry in any of the lists A, B, or C, in which case

it takes the indicated recovery action; or it may find no

such entry, in which case it takes the standard system

recovery action.

25-14

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

Bearing in mind how entries are made into the sublists

of error environment modifications, up to three entries

may be applicable to a given run time error:

• an entry applicable only to the given error;

• an entry applicable to the whole group of

which the given error is a member;

• an entry applicable to all errors.

Given the sublist scanning order described, it is clear

that there is an inherent precedence order of ON ERROR

statements.

Error

Specification

ERROR
m:n

ERROR
m:

ERROR

error code

specification

error group

specification

specification

of all errors

Precedence

FIRST

1

2

3

LAST

Example:

If the following statements have been executed

in a block:

ON ERROR GO TO ALPHA;

S 5:1

ON ERROR GO TO BETA;

S 5:

ON ERROR IGNORE;

25-15

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Then if error 5:1 occurs, execution branches

to ALPHA. If error 5:3 occurs, execution

branches to BETA. If error 6:1 occurs, the

error is ignored.

The above are true no matter in what order

the ON ERROR statements have been executed.

The behavior of an OFF ERROR statement now also becomes

clearer. On execution of an OFF ERROR statement in, say,

block C, the ERE looks through the whole of LIST C and

on finding an entry with the same error specification,

removes it from its sublist. This may expose to the

scanning process another modification in another sublist

of LIST C or a modification in LIST A or LIST B.

Example:

If the following statements have been executed

in a block:

I
i ON ERROR GO TO ALPHA;
I
iS 5:1

i ON ERROR GO TO BETA;I

IS 5:

then if error 5:1 occurs, execution will branch

to BETA. If now the following statement is
executed:

I OFF ERROR ;

IS 5:1
I

and afterwards error 5:1 occurs, execution

branches to BETA.

25-16

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

25,3 ERRORSIMULATION

At the beginning of Section 25 it was stated that

run time errors could be simulated. In fact, the same

HAL/S construct is used both to simulate "system-defined"

errors, and to signal "user-defined" errors• This

construct is the SEND ERROR statement, whose form is

shown below:

l•

•

•

SEND ERROR ;

Is m:n

m and n are unsigned integers

representing an error group

number, and an error member

number respectively.

If the error code m:n represents

a system-defined error, that error

is being simulated*.

If the error code m:n represents a

user-defined error, that error is

being signalled.

The recovery action taking place on execution of a SEND

ERROR statement is as if the corresponding run time error

had really occurred.

For reasons of software security, some implementations

may prohibit certain system-defined errors from being

simulated. See appropriate User's Manual.

25-17

INTERMETRICSINCORPORATED.701CONCORDAVENUE -CAMBRIDGE MASSACHUSETTS02138-(617) 661-1840

Example :

ON ERROR GO TO ALPHA;
i
_S 5 :

SEND ERROR ;

fS 5:2
!

Error 5:2 is simulated or signalled: a previous

ON ERROR statement has modified the recovery action

for error group 5, so that the result is a branch

to ALPHA.

In this example, it is immaterial whether error

5:2 is system-defined or user-defined.

25-18

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

26, DATASTORAGEAND ACCESS

Given the purposes for which HAL/S is intended, the

way in which declared data is physically located in

the core of the object machine will often be an

important concern. In particular, in the design of

HAL/S software, the following questions must often

be addressed:

• Does the declared data occupy as small an area

of core as is practical?

• Is the data physically ordered as it was

declared?

Can some non-critical data be relegated to

segments of core addressable by slower methods,

to make more room for critical data?

Can use be made of registers or temporary

storage areas for some data?

HAL/S contains constructs by whose means some degree of

control over each one of these factors can be achieved.

Necessarily the degree of control is implementation

dependent.

In the context of HAL/S as a real time language, the

access of data is another important concern. During

execution, an arbitrary number of real time processes

will in general be competing for access to shared data.

Certain "sensitive" data may require protection to

prevent modification by one process while a second is

referencing it. HAL/S contains constructs through

which the integrity of shared data may be assured.

26-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

26,1 PACKINGDENSITYOF STOREDDATA

The efforts that any HAL/S compiler makes to optimize

the density of storage of HAL/S data items are

implementation dependent. Generally speaking however,

the default assumption is that optimization is relatively

unimportant compared with speed of access.

The attribute DENSE when applied in the declaration of

data items causes more emphasis to be placed on storage

density optimization at the expense of speed of access.

Potentially the attribute DENSE may be applied to data

of any type, although it is a matter of implementation

as to when it causes packing density to increase.

DENSESTRUCTURES

Packing density optimization is most commonly applied to

HAL/S structures. If the packing density of a structure

data item is to be optimized, the keyword DENSE must

appear in the specification of the struc£ure template

defining its tree organization. The form of such a

template is as follows:

i.

2.

o

STRUCTURE name DENSE :

node I, node 2,...

... nodenl

name is the structure template name.

node I, node 2,...nod_ is a list of nodes

forming the tree organization, as

described in Section 19.2.

The keyword DENSE indicates that

the storage packing density of

all the structure terminals is

to be optimized*.

* See appropriate User's Manual for packing algorithms.

26-2

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Note that such optimization may cause the physical

ordering of structure terminals to differ from that

given in the template specification.

Example:

i
I STRUCTURE A DENSE:
I 1 A1
I
I 2 All BIT(16),
i
I 2 AI2 INTEGER,

I 2 AI3 ARRAY(10) BOOLEAN,

I 1 A2 CHARACTER(80);
, DECLARE ZA A-STRUCTURE;
I

All the structure terminals in ZA have their

storage packing density optimized.

When the keyword DENSE is used as described above,

storage packing density is optimized for the whole

of a structure. If the DENSE keyword is used

on a fork or leaf node of a structure template such

optimization can be restricted to part of a structure.

The way in which this works is illustrated by the

following tree diagram:

storage packing density

optimization in force

26-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Nodes connected below a "fork" node on which the keyword

DENSE appears inherit the property from it. The keyword

ALIGNED can be used to prevent inheritance of the property:

The following example shows how the keywords are actually

specified in a structure template.

Example:

STRUCTURE A:

1 A1 DENSE,

2 All BIT(16),

2 AI2 INTEGER,

2 AI3 ARRAY(10) BOOLEAN ALIGNED,

1 A2 CHARACTER(80);

DECLARE ZA A-STRUCTURE ;

26-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

The packing density is only optimized in those terminals

of ZA shown in the shaded areas of the following structure
tree:

ZA

A1

AI3

The ALIGNED keyword on AI3 has prevented the inheritance

of the DENSE property from AI.

Detailed rules for the

appearance of DENSE and

ALIGNED on fork and leaf

nodes of structure

templates, and on data

items of other types are

given in Spec./4.5.

26-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

26,2 ORDERINGOF STOREDDATA

The HAL/S language does not guarantee that the physical

order in which data is stored is the same as the order

of appearance of data items in a compilation, either

globally or locally. Nor does HAL/S guarantee that the

physical order of structure terminals in a structure
data item is the same as the order of their definition

in its structure template. Indeed, some implementations

will deliberately reorder data so that access to it can

be optimized.

In most cases such reordering is not of importance to the

HAL/S programmer. However, since there are exceptions,

HAL/S has a capability for specifying the non-reordering

of data in storage.

Reordering may be inhibited in the following constructs:

• an entire compool;

• a structure template.

NON-REORDERINGOF COMPOOLS

To prevent the reordering of data items in a compool, the

keyword RIGID is placed in the opening statement of the

compool block, as shown below.

label : COMPOOL RIGID;

i. lab_ is the name of the compool.

• The keyword RIGID denotes that

the physical order of storage
of data items is the same as the

order of their appearance in the

compool.

The corresponding compool template must possess the keyword

RIGID also.

26-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

POOL: COMPOOL RIGID;

DECLARE A ARRAY(1000) SCALAR,

B BIT (16) ;

DECLARE C CHARACTER (80) ;

CLOSE POOL;

The data in the above compool are guaranteed

to be stored in the following order:

A

B

C

The corresponding compool template is as shown

below:

POOL: EXTERNAL COMPOOL RIGID;

DECLARE A ARRAY(1000) SCALAR,

B BIT(16);

DECLARE C CHARACTER(80);

CLOSE POOL;

Use of the keyword RIGID in the above context does not

of itself prevent the reordering of structure t--er-mina-a-[s

within a structure.

Example:

DATA: COMPOOL RIGID;

STRUCTURE Q:

1 QI INTEGER,

1 QS SCALAR,

1 QB BIT(8);

DECLARE A ARRAY (100) SCALAR,

B Q-STRUCTURE,

C CHARACTER (80) ;

CLOSE DATA;

26-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The order of data items in storage is guaranteed

to be:

A

B

C

However, the ordering of terminals of B is not

guaranteed to be:

A

B

C

J

/
, B .QI

B.QS

\ B.QB
\

26-8

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

NON-REORDERINGOF STRUCTURETERMINALS

The potential reordering of structure terminals may be

inhibited by use of the keyword RIGID on the structure

template, as shown below:

i.

2.

.

! STRUCTURE name RIGID:
!

! node I 2, , node ,

',noden;
I

name is the structure template name.

node I, node2,...node n is a list of

nodes forming the tree organization,

as described in Section 19.2.

The keyword RIGID denotes that the

physical order of structure terminals

is guaranteed to be the same as the

order of appearance of the terminals

in the template.

Example:

STRUCTURE Q RIGID:

1 QI INTEGER,

1 QS SCALAR,

1 QB BIT(8);

DECLARE ZQ Q-STRUCTURE;

The order of storage of the structure terminals

of ZQ is the same as the order of their appearance

in template Q:

/
/

%
\
\

\

/

/
ZQ .QI

ZQ .QS

ZQ .QB

26-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Both the keywords RIGID and DENSE may appear on a

structure template (in any order). The effect of

RIGID takes precedence over storage packing density

optimization.

The keyword RIGID may

appear on form and leaf

nodes of a template.

See- Spec./4.5.

26,3 TEMPORARYAND REMOTESTORAGE

The data accessing characteristics of some object
machines are such that most efficient use of core is

made by dividing data into two categories:

• data which needs to be accessed quickly and

often;

• data which needs to be accessed seldom, and

where speed is not critical.

Normally all declared data in a HAL/S compilation is

treated alike, as falling into the first of these

categories. However, by appropriate specification, a

HAL/S data item can be relegated to the second category:
such data items are termed "remote".

Sometimes in HAL/S code, data items are used only as

temporary storage in an extremely localized sequence of

statements, and have no significance as far as the

algorithm implemented is concerned. If such data items

were declared normally, then the core area they occupy

would remain unused for a substantial part of the duration

of execution of the code. This waste can be avoided by

declaring them as "temporary" data items, whereupon the

26-10

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HAL/S compiler can be allowed to locate them in some

reusable "scratch pad" area*.

Control variables in repetitive DO groups are a particular

instance of data items used for temporary storage purposes.

However, in this instance a consideration is the speed with

which the value of the control variable can be accessed,

since it may be required for many subscript evaluations

within the DO group. Here it is more appropriate to set

aside a register than to locate the data item in a

scratch pad area. Declaration of such variables as

"temporary" can allow a HAL/S compiler to perform this

kind of allocation also.

SPECIFICATIONOF REMOTEDATA

A data item is declared to be remote by use of the

keyword REMOTE in its declaration. Data items of any

type except event may be designated REMOTE. The

position of the keyword in a declaration is illustrated

by the following examples:

Examples:

DECLARE I INTEGER REMOTE;

DECLARE V VECTOR(3) DOUBLE REMOTE;

DECLARE S SCALAR REMOTE INITIAL(I.5);

DECLARE B BOOLEAN INITIAL(TRUE) REMOTE AUTOMATIC;

DECLARE ARRAY(4) INTEGER REMOTE, I, K, L;

STRUCTURE Q :

1 QI INTEGER,

1 QS SCALAR,

1 QB BIT (16) ;

DECLARE ZQ Q-STRUCtURE REMOTE;

If remote data items appear in a RIGID compool, then the

remote data items appear in the remote storage area in

the same order as they were declared; the other data items

appear in the regular storage area in the same order as

they were declared.

The nature and usage of such areas is implementation

specific.

26-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Example:

D_TA: COMPOOL RIGID;

DECLARE A SCALAR,

B BIT(16) ;

DECLARE ARRAY(100) INTEGER REMOTE, I, J, K;

DECLARE C CHARACTER(80);

CLOSE DATA;

The physical ordering of data in the above

compool is as shown below:

A

B

C

storage area

K

I

remote

storage area

For more precise rules

on positioning the key-

word REMOTE, see Spec. /

4.5.

26-12

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

DECLARINGAND USINGTEMPORARYDATA

The HAL/S language enforces localized use of temporary

data items by requiring them to be declared and used

within DO...END statement groups (see Section 10.). The

END statement of a group signals to the HAL/S compiler

that "scratch pad" storage allocated to temporary data

defined in the group is available for other use.

Temporary data items are declared by TEMPORARY statements

which are declaration statements in which the keyword

DECLARE has been replaced by the keyword TEMPORARY. The
basic form is thus:

l•

2.

TEMPORARY name _,.t'_bu.,,t66 ;
I
I

name is a legal HAL/S identifier name.

a,t,t_bu..,t_ describe the type, array

property, precision and other proper-
ties of the data item as in a declara-

tion statement.

All TEMPORARY statements must appear immediately after the

DO statement and before the first statement inside the group.

Examples:

DO;

TEMPORARY S SCALAR;

TEMPORARY I INTEGER DOUBLE;

TEMPORARY B BIT (16) , [_ compoitnd statement -

ZQ Q-STRUCTURE _ compare with compound

declarations in Section 4.2.

END ;

The structure template Q cannot be defined in the

DO...END group• Its definition must appear at the

beginning of the code block in which the DO...END

group is imbedded.

26-13

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

The control variable in a DO FOR statement can also be

designated a temporary data item by preceding its appearance

in the DO FOR statement by the keyword TEMPORARY. In

this context, the control variable is taken implicitly

to be a single precision (halfword) integer.

Example:

DO FOR TEMPORARY I = 1 TO 18 BY 2;

END;

The declaration of temporary data items is subject to

the following restrictions:

• they may not be initialized;

• they may not be declared remote;

• they may not be of event type;

the name of a temporary data item may not

duplicate the name of another temporary data

item in the same DO...END group;

the name of a temporary data item may not

duplicate the name of an ordinary data item

known by the scoping rules of Section 1.2 to

the body of the DO...END group.

26-14

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

26,4 ACCESSTO SHAREDDATA

Generally at run time, an arbitrary number of real time

processes are able to share data defined in compoo!s.

Thus, it is entirely possible that one process may be

in the act of modifying such data while another process

is referencing it. It may be crucial to the integrity

of the algorithm implemented in the second process that

this be guaranteed not to take place.

To handle this situation, HAL/S has the capability to

designate certain compool data items as protected, or

"locked". Such data items can only be accessed from

within areas of code called "update blocks". The

boundaries of update blocks are visible to the Real

Time Executive (RTE) which can therefore control entry

into them and exit from them on a process-by-process

basis.

LOCKGROUPS

The protection of data could be carried out on an

individual basis data item by data item. Consider

two processes A and _, each requiring to use protected
data item Z as shown below:

A

update blocks

delimiting code

for using Z

26-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If process A began executing update block U A first, and

thus began using Z, then process B would be prevented

from beginning execution of update block U B until A had

finished executing U A.

Protection of data on an individual basis would impose

an arbitrarily large burden on the RTE depending on the

number of data items to be protected, and the number of

processes requiring to share them.

In order to limit this overhead of effort, HAL/S applies

protection on a group basis rather than an individual

one. Each data item to be protected is designated as

belonging to one of a limited number of "lock groups".

The above illustration can be restated for HAL/S as

follows.

Consider two processes A and B, each requiring to use

protected data in lock group N:

A

update blocks

delimiting code

for using data in

lock group N.

If process A begins executing UA first, then all protected

data in lock group N become unusable by process B which

therefore cannot begin executing U B until A finishes

executing U A.

26-16

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

For more global protection, some protected data items

can be designated as belonging to all lock groups

simultaneously.

If in the above illustration, for example, process

A required to use a protected data item belonging to

all groups, and execution reached U A first, then process

B could not enter U B to use protected data from any lock

group until A had finished executing U A.

LOCKGROUPSPECIFICATION

A data item in a compool is designated as protected at

the time of its declaration. The following construct is

inserted in its declaration:

.

•

•

.... LOCK (n)

.... LOCK (*)

In either form, the keyword LOCK
indicates that the data item is to

be protected.

n is a positive integer denoting

that the data item is to belong to

lock group n, where 1 Z n _ 15".

* denotes that the data item is

to be considered as belonging to

all lock groups simultaneously.

* This value may vary between implementations.

appropriate User's Manual.

See

26-17

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

The following examples illustrate the positioning of

the construct within declarations:

Examples:

DECLARE I INTEGER DOUBLE LOCK(3);

DECLARE S SCALAR INITIAL(5.5) LOCK(*);

DECLARE V VECTOR(3) LOCK(l) INITIAL(0);

DECLARE B ARRAY(1000) BOOLEAN LOCK(*);

STRUCTURE Q DENSE:

1 QI INTEGER,

1 QS SCALAR,

1 QB BIT (16) ;

DECLARE ZQ Q-STRUCTURE (20) LOCK(3) ;

For more precise rules

concerning the location

of the locking attribute

see Spec./4.5.

26-18

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

UPDATEBLOCKDEFINITIONS

An update block is an explicitly delimited body of code

wherein locked data may be referenced or modified• Super-

ficially, an update block looks similar to any other kind

of code block in the HAL/S language. Its delimiting
statements are of the form shown below:

/abe/ • UPDATE;

I body

CLOSE 2._.6e._[;

•

o

.

On the opening statement label is any

HAL/S identifier, and represents the

name of the update block•

The update block may be unlabelled,

in which case /abe/: is omitted•

If the update block is labelled,

the closing statement may optionally

possess a matching lab6£.

An update block is unique in that it is never invoked as

are other kinds of code blocks: rather it is executed

when it is encountered in the path of execution. Consis-

tent with this, the label on the opening statement of the

block may be treated as a statement label•

Example:

E

I = I + l;

IF I < 0 THEN GO TO ENTER;

J= J + i;

ENTER: UPDATE ;

T

M = M + U.U N N;

CLOSE ENTER;

26-19

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The possible paths of execution in the above

code are represented by the following flow

diagram.

E!

I I = I + 1

NO

J=! + 1

1

UpdateEntry

!

M=M+U. U NT_

!

IUpdate I
Exit

26-20

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

The following rules govern the contents of any update block•

• The opening statement may be immediately followed

by the declaration of local data, as if it were a

program block (see Section 3.2).

• Input/output statements of any kind are illegal•

• SCHEDULE, WAIT, CANCEL, TERMINATE and UPDATE

PRIORITY statements are illegal.

• Procedure and function blocks, but neither task

nor other update blocks may be nested within it.

The only procedure or function invocations which

are legal are those referencing procedure or
function blocks defined within it.

Example:

UPDATE;

DECLARE I INTEGER,

S SCALAR;

v = v/s;
e

WRITE(6) V; illegal

INNER:

_RE I body of procedure

CLOSE INNER;

CALL INNER;

CALL OUTER;

UPDATE PRIORITY ALPHA TO 50;

e

CLOSE;

illegal ~ outer not defined in

update block

illegal

26-21

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

EXECUTIONOF UPDATEBLOCKS

The behavior of processes on encountering update blocks

has already been described in this section, but only

superficially by example. This behavior is now re-
examined in more detail.

The simplest case is that of two processes wishing to

use data items from the same lock group. Each process

has to execute an update block to use the protected data

items. The following activity takes place:

If both of the processes require data items

from the same lock group to be modified then

the first process to enter its update block

must complete execution of it before the second

process can enter its own update block. The

RTE places the second process in a waiting state

for this period of time.

If one or both of the processes only require to

reference the data then in some implementations of

HAL/S, the behavior of the RTE will be the same as

before. Alternatively, in other implementations,

to reduce the second process' waiting time, the

RTE may allow partial overlap in execution of the

update blocks, consistent with exclusive use of

data by the process modifying it*.

This alternative entails more work by the RTE thus

"stealing" time from the processes' productive work.

The behavior of any implementation is therefore the

result of a trade-off to achieve an acceptable RTE

performance.

26-22

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If the two processes wish to use data from more than one

lock group, the RTE tracks the use of each lock group in

the above way. If one or both processes use data protected

by LOCK(*), then the situation is equivalent to one in

which the process or processes wish to use data in every

lock group.

If data is shared by more than two processes, then all

processes except one are put in a waiting state by the RTE.

The eventual order in which the processes complete execution

of their update blocks will depend on the contents of the

process queue and the relative priority of the processes.

Example:

In some real time application, it is required

that a process ALPHA print the values of a co-

variance matrix M once every 19 seconds. The

values are updated once every 1.5 seconds by a

second process BETA. The implementation must

guarantee that a partially updated covariance

matrix not be printed.

The covariance matrix M is declared thus:

I

I DECLARE M MATRIX(3,3) LOCK(l) ;I
I

Two task blocks corresponding to ALPHA and BETA

are shown below:

C

IE

ALPHA: TASK;

DECLARE M LOCAL MATRIX(3,3) ;

UI: UPDATE;

M LOCAL = M;

CLOSE U1;

WRITE (6) 'COVARIANCE= ' M LOCAL;
f

CLOSE ALPHA;

BETA TASK;

DECLARE VT VECTOR (3) ;

U2 : UPDATE;

T
V = (PHI M PHI + QA) Z;

S = V V/(QB + Z.V);

CLOSE U2 ;

CLOSE BETA;

26-23

INTERMETRICS INCORPORATED • 701 CONCORD AVEHUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

El

El

Processes ALPHA and BETA could be created by

invoking these task blocks with cyclic SCHEDULE

statements (See Section 23.5) of the following

form:

I SCHEDULE ALPHA PRIORITY (10), REPEAT EVERY (19) ;
I
! SCHEDULE BETA PRIORITY (20) , REPEAT EVERY (i. 5) ;
!

The following diagram shows the state transitions

of the processes:

execution of
/

update block U1

ALPHA

BETA

-- 19sec -----_I

_----l.5sec

I I
I I

t-J

i I

LIA

&

I I

i i

I
i I

execution_o f I I

/__ execution of
update block U2 _ update block U2

process waiting % end of execution

at entry to U2 of update block U1

---- executing

_ _ ready

.. waiting

--- executing

-- ready

waiting

Note that if in this example process swaps occurred

only on statement boundaries, update blocks would not

be needed since ALPHA could not ever be brought into

execution with covariance matrix M partly updated.

26-24

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

LOCKEDASSIGNARGUMENTS

The rule that locked data items can only appear in update

blocks has one sole exception: it is possible for locked

data items to appear as assign arguments in procedure

invocations. This provides the ability to "parameterize"

update blocks, as will be shown in an ensuing example.

The following rules govern the passage of locked assign

arguments:

l.

.

o

If the argument is a data item

belonging to lock group n, then

the corresponding parameter must

be declared LOCK(n) or LOCK(*).

If the argument is a data item

belonging to all lock groups, the

corresponding parameter must be

declared LOCK(,).

Argument and parameter must also
match in the senses described in

Sections 11.5, 17.7, or 19.10 as

applicable.

26-25

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples:

DECLARE A SCALAR LOCK (i),

B SCALAR LOCK(2),

C SCALAR LOCK (,) ;

PICK: PROCEDURE(P) ASSIGN (Q ,R) ;

DECLARE P SCALAR,

Q SCALAR LOCK(1),
R SCALAR LOCK(*) ;

Ibody of procedure

CLOSE PICK;

For the above procedure definitions and declarations,

the following invocations are legal:

' CALL PICK(I 0) ASSIGN(A,B) ;I
I CALL PICK(2.0) ASSIGN(A,C) ;
i
I

The following are illegal:

__/iocked data item as input argument

CALL PICK(A) ASSIGN(BtC/__-/unmatched__-
lock group

CALL PICK(3.0) ASSIGN(C,B);

The procedure PICK may contain an update block

changing the values of Q and R:

PICK: PROCEDURE (P) ASSIGN (Q,R) ;

DECLARE P SCALAR,

Q SCALAR LOCK(1),

R SCALAR LOCK(,);

U: UPDATE;

Q = Q + P;

R = R - P;

CLOSE U;

CLOSE PICK;

26-26

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

PICK may be invoked with different locked assign

arguments, thus effectively parameterizing the

update block.

I CALL PICK(1) ASSIGN(A,B);

' CALL PICK(2) ASSIGN(A,C);I

updates A and B

udpates A and C

26-27

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

27, HAL/SAND REENTRANCY"

This section deals with another indirect implication of

multi-processing in real time: reentrancy. In HAL/S,

reentrancy arises because more than one real time process

at a time can use a procedure or function. The HAL/S

language possesses constructs by which reentrancy can be

allowed or inhibited in procedures and functions.

27,1 DETERMININGREENTRANCYREQUIREMENTS

A HAL/S user intending to code a procedure or function

(either internal or external) to be invoked in a real time

context, should first determine which of the following two

categories it falls into:

The places where it is invoked are such that

it can never be in use by more than one process

at a time.

The places where it is invoked are such that it

can potentially be in use by more than one process

at a time.

If the user determines that the procedure or function

falls into the first category, then the procedure or function

block is coded following the rules given in Section ii.

If, on the other hand, it falls into the second category,

the user must make a choice between the following courses of

action:

to insure that during execution, the Real Time

Executive (RTE) allows only one process at a

time to use it;

• to insure that during execution, more than one

process can use it at a time.

* The term "reentrancy" denotes the property of

being reentrant.

27-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661 - 1840

A procedure or function in whose respect the first course

of action is taken, is called "exclusive"• One in whose

respect the second course of action is taken is called

"reentrant". The opening statements of such procedures

and functions must contain specific indication of their

exclusive or reentrant property.

27,2 EXCLUSIVEPROCEDURESAND FUNCTIONS

An exclusive procedure or function is one which the RTE

allows only one process to use at any given time. A

procedure or function is designated exclusive by the

presence of the keyword EXCLUSIVE in the opening state-
ment of its block definition•

DEFININGAN EXCLUSIVEPROCEDURE

The form of the opening statement of an exclusive

procedure is as shown below:

tm_zl : PROCEDURE(/I, Z2,...) ASSIGN(_ I, a2,...) EXCLUSIVE;
!

i. l_6f is a legal HAL/S identifier

constituting the procedure name.

2 il, i2,.. and a 1, a 2• . ,,.. are lists of

input and assign parameters as

described in Section 11.2.

• The keyword EXCLUSIVE designates an

exclusive procedure.

27-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example :

P: PROCEDURE (A) EXCLUSIVE;

DECLARE A SCALAR;

CLOSE P;

procedure body

The template corresponding to an exclusive external

procedure must also bear the keyword EXCLUSIVE.

Example:

The template corresponding to

P: PROCEDURE(A) EXCLUSIVE;

DECLARE A SCALAR;

I procedure body

CLOSE P;

would be:

I
I P: EXTERNAL PROCEDURE(A) EXCLUSIVE;

I DECLARE A SCALAR;
I
! CLOSE P;
I

27-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

DEFININGAN EXCLUSIVEFUNCTION

The form of the opening statement of an exclusive
function is as shown below:

I /abe/: FUNCTION(i I, i 2,...)
I

_bu_t_ EXCLUSIVE;

i. Zab£Z is a legal HAL/S identifier consti-

tuting the function name.

•i .2
2. • , • is a list of input parameters

as described in Section 11.2.

• _b_t_ defines the type and, where

applicable, precision of the function,

as described in Section 11.2.

4. The keyword EXCLUSIVE designates an

exclusive function•

Example :

F: FUNCTION BOOLEAN EXCLUSIVE;

CLOSE F;

function body

27-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The template corresponding to an exclusive external

function must also bear the keyword EXCLUSIVE.

Example:

The template corresponding to:

F: FUNCTION BOOLEAN EXCLUSIVE;

CLOSE F;

function body

would be:

!
i F: EXTERNAL FUNCTION BOOLEAN EXCLUSIVE;

_ CLOSE F;
I

BEHAVIOROF EXCLUSIVEPROCEDURESANDFUNCTIONS

If an exclusive procedure or function is in use by a

process A, and a process B tries to invoke it, then

the RTE places process B in the waiting state until

process A returns from its use.

Example:

Two processes ALPHA and BETA can invoke the following

procedure:

P: PROCEDURE EXCLUSIVE;

CLOSE P ;

procedure body

27-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Suppose that ALPHA invokes P first and during

its execution, BETA tries to invoke it. The state

transitions for this situation is shown below:

ALPHA

BETA

I
I I

other i
unrelated _ _.

transitions - -- __-- _--_

I I
I..... I

PHAentersj I

I i
I

other

unrelated I

transitions

-!
t

BETA tries

to enter P

I

' ,_executing

ready

i -waiting

ALPHA leaves

P

I
executing

i

I

- ready

I

-- waiting

f

_BETA leaves P

RTE allows BETA

to enter P

27-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

27,3 REENTRANTPROCEDURESAND FUNCTIONS

A reentrant procedure or function is one in which deliberate

steps are taken by the programmer to ensure correct execution

when the RTE allows more than one process to use it simul-

taneously. A procedure or function which is intended to be

reentrant must possess the keyword REENTRANT in its opening
statement.

This is a necessary but not sufficient condition to ensure

reentrancy. The programmer must observe certain additional

guidelines unenforceable by a HAL/S compiler to ensure that

a procedure or function is truly reentrant in all relevant

respects.

DEFININGA REENTRANTPROCEDURE

The form of the opening statement of a reentrant procedure

is shown below:

!

i.

.

PROCEDURE (i I, i 2) ASSIGN(al, 2) REENTRANT;

label is a legal HAL/S identifier consti-

tuting the procedure name.

il, i2, and a 1 2, a ,... are lists of input

and assign parameters as described in

Section 11.2.

Q The keyword REENTRANT indicates that the

procedure is to be considered reentrant.

Example :

P: PROCEDURE REENTRANT

CLOSE P;

procedure body

27-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If P were an external procedure, the corresponding

template would be:

i p: EXTERNAL PROCEDURE REENTRANT;i
i CLOSE P;
!

DEFININGA REENTRANTFUNCTION

The form of an opening statement of a reentrant function
is shown below:

I .i .2
I _bef: FUNCTION(_ , • ,...) _tt2_bu;te6 REENTRANT;

i. lab_ is a legal HAL/S identifier constitu-

ting the function name.

.1 .2
2. • , • ,... is a list of input parameters

as described in Section 11.2.

3. _bu_t_ defines the type and, where applic-

able, precision of the function as described

in Section 11.2.

. The keyword REENTRANT indicates that the

function is to be considered reentrant.

The template corresponding to an external reentrant function

must also possess the keyword REENTRANT.

Example:

F: FUNCTION MATRIX(4,4) REENTRANT;

CLOSE F;

function body

If F were an external function, the corresponding

template would be:
l
i F: EXTERNAL FUNCTION MATRIX(4,4) REENTRANT;
i
l CLOSE F;

_7-8

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

BEHAVIOROF REENTRANTPROCEDURESAND FUNCTIONS

If a reentrant procedure or function is in use by a

process A, and a process B tries to invoke it, the

RTE allows the invocation to proceed without restriction.

Example:

_o processes, ALPHA and BETA, can invoke the

following procedure:

P : PROCEDURE REENTRANT;

CLOSE P;.

procedure body

Suppose that ALPHA invokes P first and during

its execution, BETA invokes it. The state

transitions for this situation is as shown

below (compare corresponding example for

exclusive procedure):

ALPHA

I

l
t

i

ALPHA
enters P

BETA

ID __

I

other I

unrelated

transitions ,
l

,i,._ executing

other

BETA enters
P

unrelated

transitions
ready

I

l
I

_ ALPHA leaves P

i i
| executing

I
l

I
ready

t T t
t l

l i

_A 1 _BET_ waitingleaves P

-----'_' ALPHA and BETA both executing P
}

waiting

27-9

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

LOCALDATA IN REENTRANTBLOCKS

The most important consideration in writing reentrant

procedures and functions is that of declaring local data.

The issue that confronts the programmer is whether for

each local data item he merely wants one "copy" of it, to

be shared by all processes concurrently executing the block;

or whether a separate "copy" for each process is wanted•

Normal reentrant procedures require that execution by one

process be completely decoupled from execution by another•

Hence, separate copies for each process are usually required•

Separate copies of a local data item for each process

concurrently executing a reentrant block are generated by

the RTE as a result of declaring the data item in a

particular way. Specifically, the data item is declared

using the keyword AUTOMATIC.

The keyword AUTOMATIC was introduced in Section 16.4 as

a method for causing local data to be initialized upon

every entry into a block, rather than only the first. Used

in reentrant blocks, it causes allocation of storage on

entry into the block, as well as initialization• The key-

word may be used even though the data item is not to be

initialized.

In contrast, by default, or by using the keyword STATIC,

storage for a data item will be allocated at compile time,

and only one shared copy will exist•

Examples:

In the reentrant procedure:

P: PROCEDURE (A) ASSIGN (B) REENTRANT;

DECLARE A VECTOR;

DECLARE B SCALAR;

DECLARE V VECTOR (3) AUTOMATIC;

V = VECTOR(B, 0, 0) ;

B = V.A;

CLOSE P ;

27-10

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

V is used to store an intermediate result in

the calculations. One copy for each process

is required to insure that P contains completely

reentrant code. Hence, V is declared AUTOMATIC.

In contrast, suppose the number of times a reentrant

procedure is invoked is required to be known and

printed every 10 invocations• In this unusual, and

rather artificial case, it would be appropriate to

use a local data item not declared AUTOMATIC:

P2 : PROCEDURE (A,B) ASSIGN (C) REENTRANT;

DECLARE VECTOR, A, B t C;

DECLARE COUNT INTEGER INITIAL(0);

COUNT = COUNT + i;

IF REMAINDER (COUNT, 10) = 0 THEN

WRITE (6) 'NUMBER OF ENTRIES=' J ICOUNT ;

CLOSE P2 ;

In an implementation where process swaps can only

occur at the end of every executable statement, the

code shown would maintain a correct count of the

number of invocations.

OTHERCONSIDERATIONSIN REENTRANTBLOCKS

To preserve complete reentrancy of the code inside a

reentrant procedur e or function, other guidelines must

be adhered to:

• Any procedure or function invoked by the
reentrant block should itself be reentrant.

Update blocks and inline functions* should declare

no local data, either STATIC or AUTOMATIC,

* To be described in Section 29.4.

27-11

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

It should be noted that no update block in a reentrant

procedure or function can itself be reentrant, because

of an update block's inherent properties (see Section

26.4). However, the processes executing the reentrant

procedure or function can only pass through the update block

serially. Hence, it appears as if process swaps were

inhibited pending passage through the update block by

each process, and cross-coupling of computational results

in different processes still cannot occur. Hence,

complete reentrancy is still effectively being preserved.

27-12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

28, THE HAL/SNAMEFACILITY

Successful and efficient systems programming in a higher

order language requires an ability to "point to" specified

data items. This implies the existence of the following

constructs:

a class of data items whose values are pointers

to other data items, (or in assembly language

terms, data items whose values are addresses of

other data items);

• a mechanism for referencing and modifying pointer

values at run time;

• a mechanism for referencing and modifying ordinary

data items indirectly through pointers to them.

The HAL/S NAME facility satisfies all three of these

requirements. This section introduces the conceptual

basis of the facility, and describes in detail the

language constructs involved in its use.

A careful reading of Section 19 is a prerequisite for

the complete understanding of this section.

28.1 HAL/SNAMECONCEPTS

In some higher order languages, there exist pointer data

items which at run time can be made to point to other data

items of any kind. Thus, sometimes they may point to

scalar data items, and at others they may point to

integer or character data items. Ordinary data items

indirectly referenced through pointers cannot in such a

language be checked for legality in their given context

at compile time.

Software using such pointer data items is therefore

inherently unreliable, unless run time checking is

instituted, which may be an unacceptable alternative in

real time flight software applications.

28-1

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

NAMEDATA ITEMS

In HAL/S, pointer data items are called "NAME" data items.

To substantially eliminate software unreliability

a specific mechanism in HAL/S assures that any given

NAME data item can only point to other data items of a

single kind specified at compile time. The mechanism con-

sists in declaring a NAME data item with properties of type,

precision, and arrayness, just as if it were an ordinary

data item. These properties, rather than actually belonging

to the NAME data item, are the properties which must be

possessed by data items to which the NAME data item can

point.

This has two beneficial implications:

Any construct causing the pointer value of a

NAME data item to be modified can be subjected

to compile time checkout insuring that at

run time the NAME data item will always point to

another legal data item.

When a NAME data item is used to indirectly access

an ordinary data item, type, precision, and array-

ness properties of the data pointed to are known

and can be checked at compile time for legality

in their given context.

In HAL/S, NAME data items can also point to programs and

tasks, enabling the use of pointers in conjunction with

SCHEDULE, WAIT, TERMINATE and CANCEL statements.

INDIRECTACCESSTHROUGHPOINTERS

The appearance of an ordinary data item in an executable
statement causes its value to be referenced or modified

at run time. If a NAME data item appears in an executable

statement as if it were an ordinary data item, then at run

time the ordinary data item it is currently pointing to is

referenced or modified. This is what is meant by the

indirect accessing of data.

28-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

If a NAME data item points to a program or task, and

it appears in the same context as an ordinary program

or task name, then the program or task pointed to is

being indirectly accessed.

ACCESSINGPOINTERVALUES

If the value of a NAME data item is itself to be

referenced or modified, a special construct called the

"NAME pseudo-function" is required. This serves to

distinguish direct accessing of pointer values from

indirect accessing through pointer values.

28,2 DECLARATIONOF NAMEDATA ITEMS

HAL/S allows NAME data items to be defined which can

point to the following data types:

INTEGER

SCALAR

VECTOR

MATRIX

BIT STRING (and BOOLEAN)

CHARACTER

STRUCTURE

EVENT

In addition, NAME data items can be defined which can

point to the following kinds of code block:

PROGRAM TASK

NAMEDATA ITEMSPOINTINGTO DATA

Declarations of NAME data items for pointing to data

have exactly the same form as declarations of ordinary

data items, except that the keyword NAME immediately

follows the identifier name declared.

28-3

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Example s :

DECLARE A NAME ARRAY(100) SCALAR;

DECLARE MATRIX(3,3) DOUBLE, M1 NAME, M2 NAME;

DECLARE B NAME BIT(16),

C NAME CHARACTER(80);

STRUCTURE Q :

1 QI INTEGER,

1 QS SCALAR,

1 QI,

2 QB BIT(16),

2 QC CHARACTER (80) ;

DECLARE ZQ NAME Q-STRUCTURE;

Given the above declarations:

A may only point to 1-dimensional single precision

scalar arrays of size i00.

MI, M2 may only point to 3x3 double precision

matrices.

B may only point to 16-bit strings.

C may only point to character strings of

maximum length 80.

ZQ may only point to Q-STRUCTURES with a

single copy.

NAMEDATA ITEMSPOINTINGTO CODEBLOCKS

Declarations of NAME data items for pointing to programs

and tasks have the following basic form:

l,

t DECLARE name NAME PROGRAM;
i
t DECLARE name NAME TASK;
i

name is any legal RAL/S identifier

name.

Such declarations can be part of a compound or factored

declaration statement.

28-4

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Examples:

DECLARE P1 NAME PROGRAM;

DECLARE T1 NAME TASK;

DECLARE P2 NAME PROGRAM,

T2 NAME TASK,

S1 NAME SCALAR;

Given the above declarations:

PI, P2 may only point to prDgram blocks.

TI, T2 may only point to task blocks.

NAMEDATA ITF,]SAS STRUCTURETERMINALS

NAME data items for pointing to both data and program

or task blocks may appear as structure terminals in a

structure template. The definition of a NAME data item

in a structure terminal takes the form described in

Section 19.2, except that the keyword NAME follows the

name of the structure terminal.

Examples:

STRUCTURE Q :

1 QS NAME SCALAR,

1 QI,

2 QC NAME CHARACTER(80),

2 QR NAME PROGRAM,

2 QB NAME BOOLEAN,

1 Q2,

2 QA ARRAY (4) BIT (16) ;

Note that NAME data items for pointing to events can

appear in a structure template, even though events

themselves cannot. Note also that NAME data items in

a template A may point to structures, even those possessing

A as template.

28-5

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Examples:

The following are legal Idefinitions:

STRUCTURE R:

1 QR NAME R-STRUCTURE,

1 QE NAME EVENT;

DECLARE ZR R-STRUCTURE;

DECLARE NZR NAME R-STRUCTURE;

In this example NZR may point to ZR. ZR.QR

may also point to ZR. The implications of this

ability will be investigated later.

PROPERTIESOF DECLAREDNAMEDATA ITEMS

It has already been stated that the properties of type,

precision and arrayness appearing in the declaration of

a NAME data item actually specify the kind of data item

or code block to which it can point. Other attributes

besides these can appear in such declarations. Most of

them serve the same purpose as described, but in contrast

others apply to the NAME data item itself. Most prominent

in the latter category is initialization.

The following table summarizes the purpose of each

attribute which can appear in the declaration of a NAME

data item.

28-6

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

ATTRIBUTE

OF NAME DATA ITEM

ARRAY ()

BIT ()

BOOIJEAN

CHARACTER ()

EVENT

VECTOR ()

MATRIX ()

INTEGER

SCALAR

U-STRUCTURE ()

PROGRAM

TASK

SINGLE

DOUBLE

DENSE

ALIGNED

RIGID

_qF240TE

ACCESS

INITIAL ()

CONSTANT(}

STATIC

AUTOMATIC

Applies to

Data or Code

Block Pointed To

/
J
4
J
¢
/
J
/
¢
J
/
/

J

J

Applies to

NAME Data

Item Itself

/
/
/

/

Comments

See note Q

See note @

See note O

Affects NAME data item

as if it were an or-

dinary data item. See

Sections 26.1 & 26.2.

See note Q

Illegal, but see note

Cause initialization of

pointer value. To be

described in Section 28.6

State the kind of initial-

ization, as for ordinary

data items. See Section 16,4

NOTES :

®
®

®

®

The forms ARRAY(,) or u-STRUCTURE(*) are illegal.

The form CHARACTER(*) when used for a NAME data

item, enables it to point to a character data item

of anymaximum length.

The REMOTE attribute may appear on the declarations

of NAME data items as structure terminals, since

they may be required to point to REMOTE data.

The illegality of the ACCESS attribute does not

prevent protected data items from being pointed to.

28-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

NAMEDATA ITEMSAND TEMPORARIES

The nature and purpose of temporary data items were

described in Section 26.3. The following rules

summarize relationships between temporary data items

and NAME data items.

i.

.

No NAME data item may point to

a temporary data item.

NAME data items may not them-

selves be declared as temporary

data items.

NAMEFORMALPARAMETERS

Formal parameters may be declared with the NAME keyword

as if they were NAME data items. The purpose of this will
be described in Section 28.9.

28,3 INDIRECTACCESSTHROUGHNAMEDATA ITEMS

If a NAME data item appears in an executable statement as if

it were an ordinary data item, then the data item it points

to is taken to be accessed. Similarly, if a NAME data item

appears as if it were the name of a program or task block,

then the block it points to is taken to be accessed.

It might be said that the NAME data item has been substituted

for the ordinary data item or block, so as to achieve indirect,

rather than direct access.

28-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Examples:

DECLARE VECTOR(3), V, NV NAME;

DECLARE SCALAR, S, NS NAME;

DECLARE NT NAME TASK;

T: TASK;

CLOSE T;

task body

If NV ÷ V, NS + S and NT ÷ T _, then

NS = NV.NV;

SCHEDULE NT IN NS PRIORITY(50) ;

effectively performs the operations:

I
J S = V.V;
!
! SCHEDULE T IN S PRIORITY(50) ;
I

The foregoing statements about appearances of NAME data

items, while appearing simple and unequivocal, contain a

number of subtle implications arising from:

• interactions in structure data items;

• the effects of subscripting.

In this and following examples "÷" means "points to".

28-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INDIRECTACCESSINGAND STRUCTURES

The subtleties of indirect accessing in conjunction with

structures arise as a consequence of these two

facts:

• Any structure may possess NAME structure terminals
some of which may point to structure data items.

• Such a NAME structure terminal can actually

point back to the structure containing it.

These subtleties are best illustrated by the extended

examination of an apparently very simple example.

By the rules given in Section 28.2, the following are

legal structure declarations:

STRUCTURE A:

1 C SCALAR,

1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, ZI, Z2, Z3;

DECLARE Z4 NAME A-STRUCTURE;

ZI.B is a NAME structure terminal of A-STRUCTURE type,

which may therefore legally point to Z2. Pictorially:
/

C B

Because ZI.B points to Z2, an_ appearance of Z2 may be

substituted by ZI.B, so achieving indirect access to Z2.

It is crucially important at this point to understand

that because ZI.B points to Z2, parts of Z2 as well as Z2

itself may be indirectly accessed. For example, to achieve

indirect access to Z2.C, the appearance of Z2 in the qualified
name is substituted by ZI.B. That is, indirect access to

Z2.C is achieved by the qualified _orm ZI.B.C.

28-10

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

To illustrate this substitution process further, if Z4

points to Z2, then Z2.C is indirectly accessed by the

qualified form Z4.C, and if Z4 points to ZI, then Z2.C

is indirectly accessed by the qualified form Z4.B.C.

Multiple levelM of indirection are handled in the same

way. Suppose for example that in addition Z2.B points to

Z3. Then pictorially:

Using the same kind of substitution as before, Z3 may be

indirectly accessed by the qualified form ZI.B.B, so that

in its turn, structure terminal C in Z3 may be indirectly

accessed by the qualified reference ZI.B.B.C.

Restating how the form Z1.B.B.C was arrived at, the

following steps were taken:

substitution of Z2.B.C for Z3.C (since Z2.B

points to Z3);

• substitution of ZI.B.B.C for Z2.B.C (since

ZI.B points to Z2).

28-11

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

There are other curious consequences arising from the

interaction of indirect accessing with structures.

Suppose now, for example, that Z2.B points to Zl rather

than Z3. Then, pictorially:

B

NOW Z2.C can be indirectly accessed by the qualified form

ZI.B.C, since ZI.B points to Z2. Since Z2.B points to ZI,

the following forms are also possible:

Z2.B.B.C

ZI.B.B.B.C

Z2.B.B°B.B.C

ZI.B.B.B.B.B.C

This example illustrates the logical consequence of a closed

indirection loop between two structures•

28-12

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

INDIRECTACCESSAND SUBSCRIPTING

In this discussion, for simplicity, subscripting in

connection with structures or structure terminals will

at first be excluded. With this restriction, s_bscripting

on NAME data items is straightforward in its meaning.

Subscripting is effective on

the data item that is being

indirectly accessed.

With this interpretation, it is clear that such Qubscrlpts

must be legal for the data type pointed to. In particular,

NAME data items pointing to programs and tasks may not be

subscripted.

Examples:

DECLARE VECTOR(3), V, NV NAME;

DECLARE ARRAY(2) CHARACTER(4), C, NC NAME;

DECLARE BIT(4), B, NB NAME;

Let V --- 1. , C - ('ABCD' 'EFGH'), B - 10102

2.

Then if NV ÷ V, NC ÷ C, NB + B:

NV 3 E 2.5 since V 3 is indirectly referenced,

NCI: 3 =- 'C' since Cl. 3. is indirectly referenced,

is indirectly referenced.
NB2 TO 3 E 012 since B 2 TO 3

NV5, NB 9 are illegal since the subscripting is

illegal for V and B respectively. Such subscripting

is always illegal since NV can only point to 3-vectors,

and B to 4-bit strings.

IE

28-13

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

The complexities arising from structure subscripting

are best studied by another apparently simple example.

Suppose that the following declarations are made:

STRUCTURE A:

1 C MATRIX(3,3) ,

1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE(3), ZI, Z2, Z3 NAME;

Let copies i, 2 and 3 of ZI.B point respectively to

copies 2, 3 and 1 respectively of Z2. Pictorially:

c

According to the substitution process previously described,

the three copies of structure terminal C and Z2 can'be

indirectly accessed by specifying the three copies of ZI.B.C:

ZI.B.CI;

ZI.B.C2;

ZI.B.C3;

indirectly accesses Z2.C2;

indirectly accesses Z2.C3;

indirectly accesses Z2.CI;

28-14

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Using the terminology of Section 20.1, Z2.C is an

operand with arrayness {1:3}. Indirectly accessed

as ZI.B.C, the operand still has arrayness {1:3}

but the order of the individual elements is different.

In general of course the three copies of ZI.B may point
to three different structures (all with template A), resulting

in operand ZI.B.C being synthesized from three different sources.

Note that the structure subscript is effective before

indirection not after. As a furtherlillustration, in

ZI.B-CI;3, 3

the structure subscript selects copy 1 of the pointers

ZI.B. Note, however, that in contrast the component

subscript selects the component in row 3 and column 3
of C in the structure to which ZI.B points.

This is not always true for structure subscripts.

example, let Z3 point to Z2. Then in

For

Z3-B-Cl;3, 3

the structure subscript selects copy 1 of Z2, which is

pointed to by Z3.

These examples illustrate the following general rule:

A structure subscript may either

be effective on the data being

indirectly accessed, or upon

the NAME data item accessing it,

depending on whether the data

pointed to has copies, or whether

the NAME data item itself has

copies*.

Note that since a structure terminal which is itself a

structure (or a NAME data item pointing to a structure)

cannot possess copies , the two forms of structure

subscripting are mutually exclusive.

28-15

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138-(617) 661-1840

28,4 THE NAMEPSEUDO-FUNCTION

As briefly stated in Section 28.1, referencing or modifying

pointer values requires use of a special construct called

the NAME pseudo-function. This section states its form,

and describes its properties and their implications.

BASICFORMOF NAMEPSEUDO-FUNCTION

The basic form of the NAME pseudo-function is that of a

function with a single argument. The argument of the

pseudo-function is a HAL/S data item or parameter of

some description.

The arguments fall into two categories:

NAME DATA ITEMS (including NAME formal parameters).

The pointer value (or values) of the argument are

accessed.

ORDINARY DATA ITEMS, (including assign parameters,

but not input parameters or temporary data

items-_--and program or task block names. The

pointer value (or values) t__o the argument are
created•

The form of the NAME pseudo function is shown below:

i •

•

NAME (_tem)

_t£m is a NAME data item, ordinary

data item, or program or task block

name.

The legality of subscripting on the

argument depends on the context in

which the pseudo-function appears.

28-16

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661_1840

The appearance of a NAME pseudo-function in reference

context causes one or more pointer values to be
referenced or created:

• If the argument is an ordinary data item,

one or more pointers to it are created;

If the argument is a NAME data item, its

current pointer value or values are

referenced.

The appearance of a NAME pseudo-function in assignment

context causes one or more pointer values to be

modified. Consonant with this, in such a context,

the argument may only be a NAME data item.

Instances of the NAME pseudo-function in both reference

and assignment contexts will be described in Sections 28.5

through 28.9.

28-17

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

Examples:

Given:

DECLARE S SCALAR,

NS NAME SCALAR,

NT NAME TASK,

NA NAME ARRAY (i000) INTEGER;

STRUCTURE Q:

1 QS SCALAR,

1 QN NAME Q-STRUCTURE; '

DECLARE ZQ Q-STRUCTURE;

the following are legal:

NAME (S)

NAME (ZQ. QS)

NAME (NS)

NAME (NT)

NAME (NA)

NAME (ZQ. QN)

reference only

the following are illegal:

NAME (i. 5)

NAME (S/2)

INTERACTIONWITHSTRUCTURES

Section 28.3 described in detail how qualified structure

naming forms which involve implicit indirect access could

be constructed. Any such qualified form may appear as

the argument of a NAME pseudo-function, with effects best

summarized by example. Take again the declarations:

STRUCTURE A:

1 C SCALAR,

1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, ZI, Z2, Z3;

DECLARE Z4 NAME A-STRUCTURE;

Let ZI.B point to Z2, and Z2.B point to Z3, as shown

pictorially below:

28-18

INTERMETRICSINCORPORATED-701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

A pointer value to Z3.C can be created by the construct:

NAME (Z3.C)

Section 28.3 showed how Z3.C is indirectly accessed by

the qualified form Z2.B.C because Z2.B points to Z3.

Hence, a pointer value to Z3.C can also be created by:

NAME (Z2.B.C)

Now ZI.B points to Z2 so that Z3.C is accessed through two

levels of indirection by ZI.B.B.C. A third way of

creating a pointer value to Z3.C is therefore:

NAME (ZI.B,B.C)

If furthermore, Z4 points to Zl, then

NAME(Z4.BoB.C)

also has the same effect.

In each of the above cases, the argument of the NAME pseudo-

function is Z3.C which is an ordinary data item, even though

indirect access is used. Each of the above instances may

therefore only be used in a reference context.

The pointer value of Z2.B can itself be set up by using

NAME (Z2.B)

28-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

in an appropriate assignment context to be described.

The NAME structure terminal Z2.B may be indirectly

accessed by the qualified form ZI.B.B, since ZI.B

points to Z2. Hence, the pointer value of Z2.B can

also be set up by using:

NAME (ZI. B.B)

in assignment context. With Z4 again pointing to ZI,

NAME (Z4 .B.B)

has the same effect, since Z2.B is again accessed, this

time through two levels of indirection.

28-20

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ARGUMENTSWITH SUBSCRIPTS

Depending on the context in which the NAME pseudo-function

appears, subscripting of its argument may or may not be

legal. Following the precedent set by Section 28.3,

complications caused by structures will initially be

ignored. With this restriction, two major rules apply:

l • Subscripting may only appear when

the NAME pseudo-function is used to

reference a pointer value, never when

it is used to assign one.

. Subscripting is effective on the

ordinary data item specified or

pointed to (possibly through several

levels of indirection).

Additionally, only subscripts which perform the following

specific operations are legal at all:

selection of one scalar value from an unarrayed
matrix or vector data item;

selection of one array element from an array

of any data type;

• selection of one scalar value from one array

element of an array of matrices or vectors.

These restrictions are designed to ensure that in any

implementation the resultant pointer is to an unfragmented

area of physical storage*.

In particular, partitioning subscripts'on matrices and

arrays can cause the selection of fragmented areas of

physical storage.

28-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 861-1840

Examples:

Given the following declarations:

DECLARE V VECTOR(3),

NV NAME VECTOR (3),

S ARRAY (i00) SCALAR,

NS NAME ARRAY(100) SCALAR,

M ARRAY(5) MATRIX(3,3),

NM NAME ARRAY (5) MATRIX (3,3),

C CHARACTER (80),

NC NAME CHARACTER (80) ;

suppose that NV ÷ V, NS ÷ S, NM ÷ M and NC ÷ C.

The following are legal in contexts causing reference

of pointer values:

NAME (V 3) creates pointer to scalar value which
is 3rd element of vector V

NAME (NV 3)

NAME (S 5)

same as abo_e since NV ÷ V

creates pointer to 5th array element

of array S

NAME (NS 5)

NAME (M 3 :i, 1)

same as above since NS ÷ S

creates pointer to scalar value in row i,

column 1 of 3rd array element of M

NAME (NM 3 1) same as above since NM ÷ M:i,

NAME (M 4 :) creates pointer to 4th array element in M

The following are illegal:

NAME (C I) I subscripting on character strings

NAME (NC 1) I illegal

NAME (V 1 TO 2) I more than one element of V selected

one scalar value selected from more than oneNAME (M, :1,1) array element

28-22

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The problem of structure subscripting on the argument of

a NAME pseudo-function is now addressed. Section 28.3

showed how qualified names which indirectly access structure
terminals could be formed. It also described how

structure subscripting is either effective on the data

indirectly accessed, or on the NAME data item accessing it,

depending on which possesses multiple copies. Structure

terminals accessedby such subscripted qualified forms

can appear as arguments of the NAME pseudo-function.

The two rules previously stated for subscripted arguments

of the NAME pseudo-function must be restated to allow for

this. The modified rules are as follows:

i.

.

When a NAME pseudo-function is used

to assign pointer values, only

structure subscripting effective on

the pointer copies is legal.

For NAME pseudo-functions in reference

context, array and component sub-

scripting is always effective on the

ordinary data item specified or in-

directly accessed. Structure sub-

scripting is effective in the

ordinary data item specified or

indirectly accessed, or upon the

NAME data item indirectly accessing

it, depending on which possesses

the multiple copies.

Even when subscripts effective on the ordinary data item

pointed to are legal, only restricted forms are allowed.

Ordinary data items which are structure terminals are

subject to the additional restrictions on array and

component subscripts already described. Furthermore,

where the data item is the whole or part of a structure

with multiple copies, the following rules apply:

Structure subscripting must select one copy
only;

• such structure subscripting is mandatory unless

the entire structure is being pointed to.

28-23

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

Application of the above set of rules is illustrated by

the following example.

Example:

Given the following declarations

I
I

let

STRUCTURE A:

1 M ARRAY(5) MATRIX(3,3),

1 C CHARACTER (80),

1 V VECTOR(6),

1 B NAME A-STRUCTURE;

DECLARE Z A-STRUCTURE;

DECLARE A-STRUCTURE(3), ZI, Z2, Z3 NAME;

ZI.B 1 ÷ Z22

ZI.B 2 ÷ Z23

ZI.B 3 ÷ Z21

Z3 ÷ Zl

Illustrations for NAME pseudo-functions in a

reference context -

(a) Array and component subscripting:

NAME(Z.MI:3, 3)
creates a pointer to the scalar

value in row 3, column 3 of the

first array element of Z,M

NAME (Z.M,:I,I)
is illegal since the subscript

selects a scalar value from more

than one array element of Z.M

NAME(Z'CI0 TO 15)
is illegal since character strings

may not possess component subscripts

NAME (Z .V I)
creates a pointer to the 1st element

of vector Z.V

NAME(Z'VI TO 3)
is illegal since more than one element

of Z.V is selected by the subscript

28-24

INTERMETRICSINCORPORATED-701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

/

(b)

(c)

Structure subscripting effective upon the

data item pointed to or directly specified:

NAME (ZI2) creates a pointer to the second

copy of Z1 since the subscript

acts directly on Z1

NAME (Z32) since Z3 is a single pointer ,

pointing to the whole of ZI, the

subscript is effective on Zl rather

than Z3; hence a pointer to the

second copy of Z1 is again created

NAME (ZI .M 2 ;) creates a pointer to the array of

matrices M in the second copy of Z1

NAME (Z3.M2 ;) as before, the structure subscript

is effective on Z1 rather than Z3;

hence as before a pointer to the

array of matrices M in the second

copy of Z1 is created

NAME(ZI'MI TO 2;) is illegal since the subscript

selects more than one copy of
structure Zl

NAME(Z3.M 1 TO 2;)

NAME (ZI .M)

is illegal for the same reason

is illegal since subscripting to

select one copy of ZI.M must be
used

NAME (Z3 .M) is illegal for the same reason

Structure subscripting effective on a pointer value:

The following examples use the fact that ZI.B 1

points to Z22

NAME (Zl. BI)

NAME(ZI.B.MI;)

references the pointer value ZI.BI,

i.e. it creates the Pointer to z22

the subscript is effective of ZI.B,

so that a pointer to the array of

matrices in the second copy of Z2 is
created

28-25

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

!

NAME (Zl. B.V 1 1) the structure subscript is

effective on ZI.B as before so

that a pointer to the first

component of the vector in

the second copy of Z2 is created

Note that there is no restriction on the selection

of one pointer only by a structure subscript

effective on pointer data:

NAME (Zl. B) "simultaneously" references three

pointer values

The significance of generating more than one pointer
at a time is discussed later.

Illustrations for structure subscripts in NAME pseudo-

functions in assignment Context are adequately covered

by the examples given in part (c) above, since any other

kind of subscripting is illegal.

ARRAYEDSUBSCRIPTING

Section 20.3 discussed the phenomenon of arrayed subscripting.

Subscripts appearing on the argument of a NAME pseudo-function

may under no circumstances be arrayed.

POINTERARRAYNESS

The preceding examples have made it apparent that a NAME

pseudo-function could generate or assign more than one

pointer value at a time. Such NAME pseudo-functions are

said to have "pointer arrayness".

Pointer arrayness can arise whenever a NAME structure terminal

of a structure with multiple copies is used. The following

example illustrates this explicitly.

28-26

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Example:

i
I STRUCTURE A:

I 1 D NAME SCALAR,I
I 1 C SCALAR,
i
! 1 B N_ME A-STRUCTURE;

I DECLARE A-STRUCTURE(2), Zl, Z2;I

Given the above declarations, NAME(ZI.D) in reference

context simultaneously references the 2 pointer values

of ZI.D. In assignment context, the two pointer

values of ZI.B could be assigned simultaneously by
NAME_ZI.B).

Further, if ZI.B 1 ÷ Z22 and ZI.B 2 ÷ Z2
then

NAME(ZI.B.C) in reference context can

generate simultaneously pointer values to

Z2.C 2 and Z2.C I.

The previous discussion on subscripting has shown that

appropriate structure subscripting can reduce the number

of pointers generated or assigned, ultimately but not

necessarily to one.

If the number of pointers simultaneously generated or

assigned by a NAME pseudo-function is N then the pointer

arrayness of the NAME pseudo-function is denoted by

{N}

The behavior of pointer arrayness in operations involving

the NAME pseudo-function is similar to that of ordinary

arrayness in regular expressions (as described in Section

20). The importance of the concept of pointer arrayness

will thus become clear when constructs using the NAME pseudo-

function come to be described.

28-27

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661.1840

28,5 NULLPOINTERVALUES

Generally the use of a pointer facility requires the
definition of a "null" pointer value. In HAL/S a "null"

pointer value is indicated by the keyword NULL.

There are two forms of specification:

0

NULL

NAME(NULL)

The above forms are equivalent and

interchangeable.

It is used in reference contexts in the same way as instances

of the NAME pseudo-function.

Example:

To generate a null pointer instead of a pointer to X,

use NULL or NAME(NULL) instead of NAME(X).

28,6 INITIALIZATIONOF NAMEDATA ITEMS

Although Section 28.2 dealt with the declaration of NAME

data items, discussion of initialization was deferred because

the construct makes use of the NAME pseudo-function.

The form of initialization construct is as described in

Section 4.3. However, for NAME data items, the values in

the initial list are pointer values rather than literals.

Pointer values are generated by use of the NAME pseudo-

function, or are null.

28-28

INTERMETRICSINCORPORATED.701 CONCORD AVENUE -CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

This is an instance in which the appearance of the NAME

pseudo-function is in a reference context. However,

in this particular instance much more severe restrictions

are placed on the argument of the pseudo-function:

lo

.

•

4.

It must be a previously-declared

ordinary data item.

Its attributes must be such that it

is legal for the NAME data item to

point to it.

No subscripting is allowed.

No implicit indirection by qualified

structure references are allowed•

Examples:

The following are legal initializations of NAME
data items:

DECLARE S SCALAR,

V ARRAY (4) VECTOR DOUBLE;

DECLARE NSI NAME SCALAR INITIAL(NAME(S));

DECLARE NVl NAME ARRAY (4) VECTOR DOUBLE

INITIAL (NAME (V)) ;

STRUCTURE A:

1 C SCALAR,

1 B NAME A-STRUCTURE;

DECLARE Z1 A-STRUCTURE_

DECLARE Z2 A-STRUCTURE INITIAL(I.5, NAME(Z1));

DECLARE NA NAME SCALAR INITIAL (NAME (ZI.C)) ;

28-29

INTERMETRtCS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The following are illegal initializations of NAME

data items:

DECLARE T SCALAR;

DECLARE NT NAME SCALAR DOUBLE

INITIAL (NAME (T)) ;
NT cannot legally

point to T

DECLARE NTI NAME SCALAR INITIAL(NAME(T1));

DECLARE T1 SCALAR; T1_is not previously

defined

DECLARE V VECTOR (4) ;

DECLARE TV NAME SCALAR INITIAL (NAME (V));

3

subscripting

illegal

STRUCTURE X:

1 Y SCALAR,

1 Z NAME X-STRUCTURE;

DECLARE XX1 X-STRUCTURE;

DECLARE XX2 X-STRUCTURE INITIAL (i. 5,NAME (XXl)) ;

DECLARE NX NAME SCALAR INITIAL(NAME (XX2.Z.Y)) ;

)
contains implicit

indirection since

XX2.Z ÷ XXI through

previous initialization

NULL INITIALIZATION

All NAME data items which are not explicitly initialized, are

implicitly!initialized with null pointer values. The following

examples show the explicit initialization to null pointer values.

Examples :

DECLARE LV NAME VECTOR INITIAL(NULL);

STRUCTURE A:

1 C SCALAR,
1 B NAME A-STRUCTURE

DECLARE Z A-STRUCTURE(20) /INITIAL(20#(7.53, NULL));

I¢
each copy of B initialized

to a null pointer value

28-30

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

28,7 NABEASSIGNMENTS

A primary use of the NAME pseudo-function is in the NAME

assignment statement, where it is used to assign pointer

values. The NAME assignment statement looks similar in

form to the regular assignment statement described in

Section 8, except that:

the left hand or receiving operand is a NAME

pseudo-function in an assignment context;

the right hand operand is either a NAME

pseudo-function in a reference context, or

the specification of a null pointer value.

BASIC FORM

The basic form of the NAME assignment statement is as

follows :

o

•

Q

Symbolic form: L = R;

The receiving operand L is a NAME

pseudo-function in assignment context.

The right hand operand R is either a

NAME pseudo-function in reference

context, or the specification of a

null pointer value as described in

Section 28.5.

Given the first alternative in Rule 2,

the NAME data item specified in L must

legally be able to point to the

ordinary data item whose pointer

value is generated by R.

Arguments of the NAME pseudo-functions in a NAME assignment

follow the rules laid down in Section 28.4.

28-31

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

Examples:

Given the declarations

DECLARE S SCALAR,

NS NAME SCALAR,

NSD NAME SCALAR DOUBLE;

DECLARE V VECTOR(3),

NV NAME VECTOR(3) ;

STRUCTURE A:

1 C SCALAR,

1 B NAME A-STRUCTURE;

DECLARE Z1 A-STRUCTURE,

Z2 A-STRUCTURE,

NZ NAME A-STRUCTURE;

then

IS

NAME (NSD) = NULL;

NAME (NS) = NAME (S) ;

NAME (NSD) = NAME (NS) ;

NAME (NV) = NAME (V) ;

NAME(NS) = NAME(V) ;
2

NAME(NZ) = NAME(Z1) ;

NAME(NZ.B) = NAME(Z2) ;

results in NSD + @*

results in NS ÷ S

is illegal since NS ÷ S and

NSD may not legally point to

S itself

results in NV + V

results in NS + V2- note that

V 2 is a scalar value, which

is why NS may legally point

to it

results in NZ ÷ Zl

results in ZI.B ÷ Z2 because of

implied indirection in qualified

reference NZ.B, in which NZ ÷ Zl

NAME(NS) = NAME (NZ.B.C); results in NS ÷ Z2,C because of

2 levels of implied indirection

in qualified form NZ.B.C, in which

NZ + Zl and ZI.B ÷ Z2

* @ indicates a null pointer value,

28-32

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

MULTIPLEASSIGNMENTS

Section 8.5 showed how regular assignment statements could

possess multiple left hand operands. NAME assignments can

also possess multiple left hand operands, so enabling one

pointer value to be assigned to more than one NAME data
item at a time.

The general form of a multiple NAME assignment statement
is shown below:

i.

.

•

Symbolic form: t I L 2 in R;
Q f e • • e

Each receiving operand i I... in is a

NAME pseudo-function in assignment

context.

The right hand operand R is the same

as in the basic form of assignment.

If R is a NAME pseudo-function(the

NAME data items specified in ii...i n

must each legally be able to point

to the ordinary data item whose

pointer value is created by R.

Example:

Given

DECLARE S SCALAR,

NS NAME SCALAR,

NT NAME SCALAR;

STRUCTURE U:

1 US NAME SCALAR r

1 UN NAME U-STRUCTURE;

DECLARE Z U-STRUCTURE;

The following is a legal multiple NAME assignment:

I
, NAME(NS), NAME(NT), NAME(Z.US) = NAME(S) ;
!

28-33

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(617) 661-1840

POINTERARRAYNESSIN NAMEASSIGNMENTS

Section 28.4 discussed the ability of a NAME pseudo-

function to generate or assign more than one pointer at

a time, calling this property "pointer arrayness".

Pointer arraynesses in NAME assignments must conform to

the following requirements:

io

.

In the basic form of NAME assignment,

if the R-operand has a pointer

arrayness {N}, then the L-operand

must have pointer arrayness {N}. If

the R-operand has no pointer array-

ness, the L-operand may have arbitrary

pointer arrayness or none.

In multiple NAME assignments, all

L-operands are always required to

have the same pointer arrayness.

Examples:

Given

STRUCTURE A :

1 B NAME SCALAR,

1 C SCALAR;

DECLARE Zl A-STRUCTURE(3),

Z2 A-STRUCTURE (5) ;

DECLARE S SCALAR;

then 3 copies of ZI.B exist, and 5 copies of Z2.B
exist. Hence in

NAME(ZI.B) = NAME(S) ;

the pointer arrayness on the left is {3} whilst

the right hand operand has none. The result of

this assignment is:

ZI'BI;

ZI.B2; --_ S

Z1.B3; ._
28-34

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Further,

NAME(Z2.B) = NAME(ZI.B) ;

is illegal since the left and right hand pointer

arraynesses are {5} and {3} respectively which

do not match. However,
I
i
i NAME(Z2.B) = NAME(ZI.B);

IS 3 TO 5;

is legal since the left hand arrayness has been

reduced to {3}. The result of the assignment is

Z2.B3; E ZI.BI;

Z2.B4; E ZI.B2;

(i.e. they both have the same

pointer value)

Z2,B 5 E ZI.B 3;

If pointer values of both ZI.B and Z2.B 3 TO 5_
are to be assigned together, then
I
I

, NAME(ZI.B), NAME(Z2.B) = NAME(S);

IS 3 TO 5;
I

is the appropriate assignment.

Note that

I
I
I
I
tS
I

NAME(ZI.B), NAME(Z2.B) = NAME(S);

NAME(ZI.B), NAME(Z2.B) -- NAME(S);

i;

are both illegal because the pointer arrayness of the

left hand sides in each case do not match.

28-35

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617) 661.1840

28,8 NAMECOMPARISONS

Section 9.2 of Part I showed how relational expressions

could be built by combining comparisons with the operators

&, I, and 9. Such comparisons may include comparisons

between pointer values. Pointer values are compared through

use of the NAME pseudo-function and the null pointer

specification. Only the Class II operations are legal in

NAME comparisons:

Symbol Purpose Class

NOT =

equals

I not equals

II

The rules for NAME comparisons are given below:

i.

,

0

Symbolic form: i NOT = R

The i and R operands are either NAME

pseudo-functions in reference context

or null pointer value specifications.

If both i and R operands are NAME

pseudo-functions, the ordinary data

items pointed to must have matching

attributes (i.e. there must exist a

NAME data item which can legally

possess the pointer value generated

either by i or by R).

Equality is achieved if both L and R

genera£e the same pointer value.

28-36

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Arguments of the NAME pseudo-functions in a NAME comparison

follow the rules laid down in Section 28.4.

Examples:

Given

I
I
i
i
I
I
I

Then

!
I
I
I
!
I
I
I
I

DECLARE S SCALAR;

DECLARE NS NAME SCALAR INITIAL (NAME (S)),

NT NAME SCALAR INITIAL (NULL);

NAME (NS) = NAME (S) is TRUE;

NAME (NS) = NAME (NULL) is FALSE;

NAME (NT) _= NAME (NULL) is FALSE;

NAME (NT) _= NAME(NS) is TRUE;

POINTERARRAYNESSIN NAMECOMPARISONS

Any NAME pseudo-function in a NAME comparison may have

pointer arrayness. In such circumstances the following

rules apply:

le

.

Either one or both i and R operands

may possess pointer arrayness.

If both i and R operands possess

pointer arrayness, they must

possess the sam____epointer arrayness.

When the comparison possesses pointer arrayness in the

above sense, it is viewed as a set of elemental compari-

sons proceeding in parallel. The outcome of all elemental

comparisons are combined to form a single TRUE or FALSE

result, in accordance with the following table:

28-37

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

Operation

NOT =

Result

TRUE

FALSE

TRUE

FALSE

Conditions for Result

Equality in all elemental

comparisons is obtained

Equality in one or more

elemental comparisons is

lacking

Equality in one or more

elemental comparisons is

lacking

Equality in all elemental

comparisons is obtained

Examples:

Given

!
I STRUCTURE A:

! 1 D NAME SCALAR,I
I 1 C SCALAR;
I
I DECLARE Z1 A-STRUCTURE (3) ,

I Z2 A-STRUCTURE (5) ;I
I DECLARE S SCALAR;
I

After execution of

i
i
, NAME (ZI 0D) = NAME (S) ;
i

then the result of the comparison

NAME(ZI.D) = NAME(S) is TRUE

since
'I-DI;. K

ZI.D 2 -_S

ZI-D3;

28-38

INTERMETRICSINCORPORATED.701 CONCORD AVENUE -CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

After subsequent execution of

I
g
I NAME (ZI.D) = NULL;

SS i;I

then the result of the comparison

NAME (ZI.D) = NAME(S) is FALSE

because ZI.D 1 --_ @

ZI'D2;_ S

ZI.D3;

The comparison

NAME(ZI.D) = NAME(Z2.D)

is illegal because the pointer arraynesses of the

left and right operands are {3} and {5} respectively,

which do not match. However, the comparison

NAME(ZI.D) = NAME(Z2.D 3 TO 5;)

is legal since the pointer arrayness of the right

hand operand has been reduced to {3}.

PRECEDENCEOF NAMECOMPARISONS

The precedence of NAME comparisons in relational expressions

is the same as that of any other kind of comparison. The

relevant precedence rules have already been tabulated in

Section 9.2.

28-39

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

28,9 ARGUMENTPASSAGEOF POINTERVALUES

Pointer values may appear as arguments in procedure or

function invocations provided that the corresponding

formal parameters are declared using the keyword NAME,

as if they were NAME data items.

INPUT ARGUMENTS - The NAME pseudo-function in

reference context, or the null pointer value

specification is used.

• ASSIGN ARGUMENTS - The NAME pseudo-function in

assignment context is used.

INPUTARGUMENTS

The effect of using a pointer value as an input argument of

a procedure or function is as if the pointer value were being

assigned to the corresponding NAME input parameter. The

attributes of the NAME input parameter must therefore allow

legal acceptance of that pointer value•

Examples:

DECLARE S SCALAR;

DECLARE NS NAME SCALAR;

DECLARE NT NAME TASK;

F: FUNCTION(A,B) SCALAR;

DECLARE A NAME SCALAR,

B BOOLEAN;

CLOSE F;

function body

28-40

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

NAME(NS) = NAME(S) ;

S = F(NAME(S), TRUE) ;

S = F(NAME(NS), FALSE) ;

S = F(NAME(NT), TRUE) ;

S = F(NULL, FALSE) ;

invocation results in input

parameter A pointing to S

has the same effect: A gets

same pointer value as NS,

i.e.A+S

is illegal since pointer values

legal for NT are not legal for A

results in A ÷

Note that although ordinary input parameters are prevented

from appearing in NAME pseudo-functions, NAME input

parameters are only prevented from appearing in NAME

pseudo-functions in assignment context•

ASSIGNARGUMENTS

A pointer value may be passed both into and out of a procedure

by the appearance of a NAME pseudo-function in the assign

argument list of the procedure's invocation. The class of

data items which can be pointed to by the NAME data item

appearing in the NAME pseudo-function must be the same

as that which can be pointed to by the corresponding NAME

assign parameter•

Examples:

DECLARE NS NAME SCALAR;

DECLARE NT NAME TASK;

STRUCTURE A:

1 B NAME A-STRUCTURE,

1 C SCALAR;

DECLARE Z A-STRUCTURE;

P: PROCEDURE ASSIGN (U,V) ;

DECLARE U NAME TASK,

V NAME A-STRUCTURE:

CLOSE P;

procedure body

28-41

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

CALL P ASSIGN (NAME (NT) ,NAME (Z.B)) ;

causes passage of pointer values

between NT and U, and between Z.B

and V.

CALL P ASSIGN (NAME (NS), NAME (Z)) ;

/

illegal because _ illegal because Z is not a

NS points to NAME data item

scalar data items

but NT points to
tasks

POINTERARRAYNESSIN ARGUMENTS

No NAME formal parameter can possess multiple pointer copies,

because a formal parameter cannot be declared as a NAME

structure terminal of a structure with multiple copies•

Hence, an appearance of a NAME pseudo-function as the

argument of a procedure or function invocation may only

give rise to the transmission of one pointer value pe r

invocation.

The implications of this differ depending on whether the

argument is in a procedure invocation or a function invocation.

PROCEDURE INVOCATIONS: NAME pseudo-functions appearing

as arguments of a procedure invocation may not possess

pointer arrayness.

FUNCTION INVOCATIONS: NAME pseudo-functions appearing

as arguments of a function invocation ma__ possess

pointer arrayness. The pointer arrayness must match

the ordinary arrayness of the expression in which the

invocation is imbedded, as if it were itself an

ordinary arrayness. The function is repeatedly

invoked, once for every elemental evaluation of the

outer expression; and, during each invocation, trans-

mittal of one of the pointer values takes place.

Reference to Section 20.6 will clarify this behavior•

28-42

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Examples:

STRUCTURE A:

1 B NAME SCALAR;

DECLARE Z A-STRUCTURE(20);

DECLARE Sl ARRAY(20) SCALAR,

S2 ARRAY (i0) SCALAR;

P: PROCEDURE(U) ASSIGN(V);

DECLARE U NAME SCALAR,

V NAME SCALAR;

procedure body

CLOSE P;

F : FUNCTION (W) SCALAR;

DECLARE W NAME SCALAR;

function body

arrayness exists

CLOSE F;

CALL P(NAME(Z.B 1)) ASSIGN (NAME (Z .B)) ;

• legal because pointer egal because pointer

• arrayness subscripted

away

S =SI + F(NAME(Z.B)) ;

legal because pointer arrayness {20} matches

arrayness {1:20} of Sl

28-43

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The above is equivalent to

SI, = SIo + F(NAME(Z.Bz)); for 1 _ i < 20

wherein each of 20 invocations of F cause transmission

of a different pointer value.

Note that

$2 = $2 + F(NAME(Z.B));

is illegal because the pointer arrayness of Z.B

does not match the regular arrayness {I:i0} of S2.

28,10 POINTERVALUES IN INPUT/OUTPUT

No construct using the NAME pseudo-function exists to

allow pointer values to be input or output. However,

because structures containing NAME structure terminals may

be input or output, rules must be laid down specifying their

behavior in such circumstances.

SEQUENTIALINPUT/OUTPUT

Sequential I/O statements were described primarily in

Section 12 and 22.1. The sequential I/O of structure data

items was described in Section 19.12.

The fundamental rule for NAME structure terminals is that

they do not take part in the I/O operation: so far as input

as output processing is concerned they do not exist.

28-44

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Example:

So far as sequential I/O is concerned, structures

Y and Z declared below are exactly equivalent.

STRUCTURE A:

1 A1 SCALAR,

1 N NAME VECTOR(3),

1 A2 CHAP_ACTER (80),

1 A3 MATRIX(3,3);

STRUCTURE B:

1 B1 SCALAR,

1 B2 CHARACTER(80),

1 B3 MATRIX(3,3);

DECLARE Z B-STRUCTURE,

Y A-STRUCTURE;

The pointer value of Y.N would not be changed by

any input operation•

IE

RANDOMACCESS INPUT/OUTPUT

Random access I/O has been described in Section 22.2.

In Contrast to sequential I/0, NAME structure terminals

do take part in random access I/O. The pointer value

involved is input or output along with the other parts
of the structure.

Example:

STRUCTURE Q:

1 A NAME SCALAR,

1 B ARRAY (1000) BIT (16) ;

DECLARE Q-STRUCTURE, QI, Q2 ;

FILE(I,10) = QI;

Q2 = FILE(I,10);

The above FILE statements result in the pointer

value originally in QI.A being transferred to Q2.A,

just as the values of QI.B are transferred to Q2.B.

28-45

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

29, REPLACEMACROSAND INLINEFUNCTIONS

The simple REPLACE statement which defines symbolic

text substitutions was introduced in Section 5 of

Part I. It was stated that the REPLACE statement is

used to define a "replace name" symbolically representing

arbitrary HAL/S text, and that subsequent appearances

of the replace name cause the HAL/S compiler to substitute
the text represented.

The utility of this feature is greatly extended by the

ability to specify parametric replacements wherein the

text to be substituted is modifiable from substitution

to substitution. This section describes how such

parametric replacements are defined and used.

The "inline function" is a HAL/S construct designed to

enhance the versatility of parametric replacements. It

takes the form of a parameterless function block whose

definition is also its invocation. Inline functions and

their use in conjunction with parametric replacements are
also described in this section.

29,1 THE PARAMETRICREPLACESTATEMENT

The REPLACE statement as defined in Section 5.1 allows only

simple replacements to be specified. Replace names for

specifying parametric replacements are define with a list

of parameters which also appear in the text to be substituted,

and are called "replace macros". Every appearance of the

replace macro is accompanied by a list of text string

arguments that replace the parameters in the text to be
substituted.

29-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The form of REPLACE statement for defining replace macros

is shown below:

!

i (parm I '!REPLACE name parm n) BY "XXXXXXX";

i. name is the name of the replace macro, and

is a legal HAL/S identifier name.

2. parm l,....parm n is an arbitrary number of

parameters, each of which is a legal HAL/S

identifier name.

• XXXXXXX represents HAL/S source text to

be substituted. Any of the parameters

specified in the replace macro definition

may appear in it any number of times. It

conforms to the same rules as given in

Section 5.1 for the simple REPLACE state-

ment.

Examples:

REPLACE A(X,Y) BY "READ(X) Y";

REPLACE B(Z) BY "Z = Z + i";

The text to be substituted may not begin or end in the

middle of identifiers, reserved words, literals or

inbedded comments. Effectively this means that the text

must be complete in itself, and cannot result in the

generation of any new symbols when substitution occurs.

This rule is equally applicable to the substitution of

parameters in the replace text. The appearance of a

parameter in a literal, identifier, reserved word, or

imbedded comment is not seen by the HAL/S compiler as

such, and substitution will not occur•

Example :

!
I REPLACE P (A) BY "READ (5) 'VALUES : ',AB, A" ;i

these do not constitute appearance of A

appearances of parameter
A

29-2

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

29,2 USE OF REPLACE MACROS

Every appearance of a replace macro is accompanied

by a list of text string arguments that replace the

parameters in the text to be substituted. The general

form of such an appearance is given below:

i.

name (_i _g2 aAgn_ • • 0.)

namg is the name of the replace macro.

• Each _ is either a string of text
which conforms to the same rules as

the substitution text itself, as

described earlier, or is empty.

. Each argument replaces the correspon-

ding parameter in the replace defini-

tion during substitution.

Each non-empty text string argument also has the following
restrictions:

It may contain only an even number of apostrophes ('),

ensuring that bit string--_d character literals are

completely contained within it.

It may contain only an even number of double quote

marks ("), ensuring that--_stitution text of any

imbedded REPLACE statement is completely contained
within it.

• It must contain a balanced number of left and right

parentheses.

Since commas (,) are used to separate text string

arguments, commas can only appear in arguments if

they are part of a character litera-[, or are imbedded

in replace text, or nested within parentheses.

29-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Note that, because the arguments consist of HAL/S source

text, blanks are always considered potentially significant,

and are included in the parameter replacement process.

Examples:

If the replace macro TEST is defined by:

i REPLACE TEST(A,B,C) BY "IF A THEN B ELSE C";

then

i
I TEST(P = 0, S = I;,S = 2;)

1
expands into

i
I IF P = 0 THEN S = I; ELSE S = 2;
I

The instance

i

i TEST(P = 0, S = i;, S = 3**() P + Q);

although intended to expand into

I
i IF P = 0 THEN S = i; ELSE S = 3**(P + Q);
I

is illegal since the last argument has an unmatched

parenthesis.

Note that

I
I TEST(P = 0, S = i;,);
I

expands into
I

! IF P = 0 THEN S = i; ELSE;I
i

since the last argument is empty.

29-4

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

THE SUBSTITUTIONPROCESS

The substitution process itself must be examined more

closely if the full potential of the replace macro for

nesting and recursion are to be understood.

The recognition of replace macros, and the resulting

text substitutions, are carried out by a part of the

HAL/S compiler which will, for convenience, be called

the "macro scanner".

On seeing the appearance of a replace name with or

without arguments, the macro scanner first substitutes

the replace text. It then begins scanning through the

text from left to right, searching for appearances of

parameters, or other replace names (with or without

arguments). When one is found, the related text is

substituted, and scanning resumes from the beginning of

the inner text just substituted.

Therefore, parameters and replace names appearing in sub-

stituted text strings are always themselves replaced by

more text, however deep the level of nesting may get.

Example :

Given

REPLACE C BY " (X+Y)/2" ;

REPLACE B BY "SIN(C)";

REPLACE A BY "X=B+I";

Then the appearance

I
i A;
I

is expanded by the macro scanner in the following

stages.

X = B + i; ist substitution

L L embedded replace name found

scanning starts here

29-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

X = SIN(C) + i; 2nd substitution

_ embedded replace name found

scanning resumes here

X = SIN((X + Y)/2) + i; 3rd substitution

L no more replace names -

t

found

end of scan

scanning resumes here

It is important to remember that during the substitution

of a replace macro that any appearance of a parameter,

either in the text substituted or appearin_ in it as a

result of an inner substitution, will be recognized and

replaced by the corresponding argument text string. This

may give rise to recursive substitution in some circumstances.

Examples:

(a) Given

' REPLACE Z BY "SIN (X) ";
I REPLACE A(Y,X) BY "WRITE(6) Y, Z";
I
I

the appearance

I A('VALUE=' 1 5) ;
I F •

is expanded by the macro scanner in the following

stages:

I WRITE(6) 'VALUE=', Z; ist substitution

! I _ embedded replace name found

scanning starts here

i WRITE(6) ' V_SIN(_); . 2nd substitutionI o e •

parameter found

scanning resumes

here

I

' WRITE(6)I

'VA_l.5_end; of....scan3rd substitution

scanning resumes here

29-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

D

(b)

(c)

Given

i

I REPLACE A(X,Y) BY "Z = X + Y";!

then the appearance

A(I.5 X);
i

is expanded as follows:

J

'parameter found

scanning starts here

z = l.S + 1.3;

y end of scan

scanning results here

.... ist substitution

.... 2nd substitution

Given

I

REPLACE A(X,Y) BY "Z = SIN(X)";

the appearance

!
! A(Y,X) ;
I

is expanded as follows:

I
, Z = SIN(y);

tI

[parameter found

scanning starts here

ist substitution

!
i Z = SIN(X); 2nd substitution
I

scanning resumes here

and finds parameter

I
i Z = SIN(Y); . 3rd substitution
| • • •

.... . expansion continues indefinitely.

29-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

29,3 IDENTIFIERGENERATION

Text strings involved in simple or parametric replacements

cannot begin or end in the middle of an identifier.

However, there exist two extensions of the REPLACE facility

by whose means identifier names can be generated during the

substitution process.

Identifier names can be generated both during the process

of substitution of a replace name, and during the replace-

ment of a parameter. The normal replace mechanism is

used, except that the appearance of the parameter or of

the replace name (and its argument list where one appears),

is delimited by ¢ signs.

Examples:

El

(a) Given

I
i
I REPLACE X BY "ALPHA";

X BET is expanded as the product ALPHA BET

XBET is merely a single identifier, X not being

recognized as a replace name.

but

¢X¢BET is expanded generating the identifier

ALPHABET.

(b) Given

REPLACE P(A) BY "Z = A + X";

Z¢P(1)¢5 expands into ZZ = 1 + X5 generating

two identifiers, ZZ and X5.

(c) Given

!
i REPLACE P(A) BY "Z = T¢A¢6 + X";
i

P(1) expands into Z = T16 + X generating T16

and

ZCP(1)¢5 expands into ZZ = TI6 + X5 generating

T16, ZZ, and X5.

29-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

29,4 INLINEFUNCTIONS

An inline function is a parameterless function block

whose definition also constitutes its invocation. Hence,

the block defining the function can actually appear

embedded in an expression which forms part of some

executable HAL/S statement. Since its definition is

its sole invocation, nothing can reference it explicitly,

and s--_t is given no name.

BASIC FORM

The form of an inline function block is exactly that of

an ordinary function with no parameters, as described in

Section 11.2 with one exception, namely that the opening

statement does not bear a label indicating its name.

Examples:

FUNCTION SCALAR;

CLOSE;

function body

FUNCTION CHARACTER (80) ;

CLOSE;

function body

29-9

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Local data may be declared within the function body, as

in an ordinary function. The following constructs are
however not allowed:

• procedure, function or task block definitions;

• any kind of I/O statement/

• invocations of any procedure or function;

• nested inline functions;

• SCHEDULE, WAIT, CANCEL, TERMINATE or UPDATE
PRIORITY statements.

USE OF INLINEFUNCTIONS

Except as noted below, inline functions may appear wherever

an ordinary function could be legally invoked. The

exceptions are:

• exponent expressions;

• subscript expressions.

The following example illustrates how inline functions

are used.

Examples:

x:x
• CLOSE ; _

This would give the same result as

X = X + X**2;

inline function

29-10

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138. (617) 661-1840

or as

F : FUNCTION SCALAR;

RETUP_N X;

CLOSE;

X = X + F**2;

The following usage is illegal:

i RETURN X; _M.__._ inline function
,CLOSE ; .-.
+-f;-....

since the function appears as an exponent.

MOTIVATIONFOR USE

Inline functions are potentially useful because, when

generated by the substitution of replace macros, they

increase the flexibility of parameterization. The

fact that the appearance of a replace macro looks like

a function invocation, and can expand into an inline

function returning a value, is of particular interest.

Example:

Suppose that some algorithm requires finding the

maximum element of a 1-dimensional array on a

number of different occasions; and that in each

occasion the array has a different size, and may

be of integer or scalar type and of single or double

precision.

29-ii

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

On each occasion, it is supposed that the resultant

index is used in some subsequent evaluation, so that

a function invocation returning the result would be the

most appropriate implementation. However, the differing

attributes of the arrays preclude any regular HAL/S

function being written to perform the operation.

The use of a replace macro which on each occasion

expands into an inline function returning the

resultant index is a feasible alternative.

The replace macro would be defined as follows:

REPLACE MAXIMUM(A) BY

"FUNCTION INTEGER;

DECLARE I INTEGER INITIAL(l) AUTOMATIC;

DO FOR TEMPORARY J = 2 TO SIZE(A);

IF A$J > A$I THEN I = J;

END;

RETURN I;

CLOSE;". i

The text comprises an inline function returning the

index of the maximum element of the _rray, which

is represented by the parameter A.

Each appearance of replace macro MAXIMUM is

accompanied by one argument, the desired array.

The algorithm implemented in the inline function

works for any 1-dimensional array of integer or

scalar type, and of single or double precision.

Such an appearance might be:

I
t IF MAXIMUM(XTABLE) = 1 THEN

! WRITE(6) 'FIRST ELEMENT IS MAXIMUM';t

l

And would expand into:

I IF FUNCTION INTEGER;
i
i
I
i
I

Is
I
I
I
I
I
I
I
I

DECLARE I INTEGER INITIAL (i) AUTOMATIC;

DO FOR TEMPORARY J = 2 TO SIZE(XTABLE);

IF XTABLE > XTABLE THEN I = J;
J I

END;

RETURN I ;

CLOSE;

WRI TE (6)

= 1 THEN

'FIRST ELEMENT IS MAXIMUM';

29-12

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

The improved readability and ease of use of this

implementation compared with direct in-line HAL/S

code for each occurrence of the operation will readily

be appreciated.

29-13

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138"(617) 661-1840

30, MANAGERIALCONTROLOF ACCESSTO DATAAND CODE

In a large software project numerous compilation units each

performing independent functions may be brought together in

a single module at run time for execution. Commonly, these

compilation units will require access to shared data

contained in compools. If several teams of programmers

cooperate in the production of this software, it is

desirable to be able to place managerial restrictions

upon who can access "sensitive" shared data. It may

also be desirable to place managerial restrictions upon

who can invoke "sensitive" programs or comsubs.

30.1 ACCESSCONTROLIN HAL/S

HAL/S contains a method for specifying which data, and

which programs and comsubs are to be protected by

managerial restriction.

If at compile time, a compilation unit written by an

unauthorized programmer is found by a HAL/S compiler
to contain:

a construct causing modification of protected

data in a compool; or

a construct referring to any entity in a

protected compool; or

• a construct invoking a protected program, or

external procedure or function;

then an error will be signalled and the compiler will

produce no executable object module.

To circumvent this error, the programmer's authorization

to use protected data or code blocks must be signalled to

the compiler, and in addition , the program itself must
state that the data or code blocks are under protection.

This latter restriction insures that an authorized

programmer is aware that he is accessing protected data

or code.

30-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The mechanism by which the HAL/S compiler determines

whether a given programmer is authorized to use a

particular protected data item or code block is implemen-

tation dependent*.

30,2 ACCESSINGPROTECTEDCOMPOOLDATA

Compool data items which are protected must be declared

using the keyword ACCESS. The following examples illustrate

the position of the keyword in a declaration.

Examples:

POOL: COMPOOL;

DECLARE A SCALAR DOUBLE ACCESS;

DECLARE B ARRAY(1000) BIT(8) INITIAL(FALSE) ACCESS;

DECLARE V VECTOR (3) ;

DECLARE ZX ARRAY(100) ACCESS INITIAL(0) REMOTE;

CLOSE POOL;

The keyword appears also in the declarations of the

corresponding compool template.

An authorized programmer will be allowed to modify protected

compool data provided it is declared as described above.

For more precise rules

for locating the key-

word in a declaration,

see Spec./4.5.

* See appropriate User' s Manual.

30-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

30,3 PROTECTIONOF AN ENTIRECOMPOOL

It is possible to place an entire compool under protection

in addition to placing its declared data items individually

under protection. Every data item, structure template and

replace name defined within such a compool is protected

against any unauthorized use. A protected compool must

contain the keyword ACCESS or part of its definition,

the keyword being placed at the end of its opening state-

ment.

Example:

POOL: COMPOOL ACCESS;

REPLACE X BY "1000";

DECLARE S SCALAR,

V VECTOR (3),

M MATRIX(3,3) ,

A ARRAY (1000) S CALAR;

DECLARE C CHARACTER (80) ;

STRUCTURE Q:

1 QS SCALAR,

1 QI INTEGER;

DECLARE Z Q-STRUCTURE;

CLOSE POOL;

Data items S, V, M, A, Z and C are protected against

unauthorized modification or reference. Replace name

X and structure template Q are also protected.

The template corresponding to a protected compool must also

possess the keyword ACCESS.

Any data item in a protected compool may itself also be

individually protected, the keyword ACCESS appearing in

its declaration as described before. A user requiring

to modify the data item must be authorized in respect

to the compool and to the individual data item itself.

30-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

30,4 ACCESSINGPROTECTEDPROGRAMSAND COMSUBS

Programs, external procedures, and external functions

which are protected must contain the keyword ACCESS

as part of their block definition. The keyword is placed

at the end of their opening statement.

Examples:

PI: PROGRAM ACCESS;

CLOSE P1;

program body

P2: PROCEDURE (A) ASSIGN (B) ACCESS;

CLOSE P2;

procedure body

P3: FUNCTION(I) CHARACTER (80) ACCESS;

_ I function body

CLOSE P3;

The corresponding block templates must also possess the

keyword ACCESS in the corresponding place.

30-4

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

An authorized programmer will be allowed to invoke or

otherwise reference the protected block provided it is
defined as described above.

For a complete descrip-

tion of using the ACCESS

keyword on the opening

statements of programs

and comsubs, see

Spec./3.7.1-3.7.3.

30-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

31, INTERFACESWITH NON-HAL/SCODE

The HAL/S language has been expressly designed so that

nearly all flight software can be written in it. However,

it is realized that sometimes legitimate reasons exist

for implementing some segments of the software in languages

other than HAL/S (notably in assembly language, for example).

Hence, HAL/S must be able to provide interfaces to the

resulting code.

Two approaches are possible in interfacing with non-HAL/S

code.

Sometimes the purpose of the non-HAL/S software

segments is to provide a set of "utility functions"

which are standard for a particular implementation

of the HAL/S compiler system. In such circumstances

it is desirable for the HAL/S compiler to recognize

references to these utility functions automatically,

as if they were in some sense extensions to its

known list of HAL/S built-in functions. This is

done by defining the segments to be "%macros",

which may be referenced in appropriate contexts

in the HAL/S software.

Where the use of the non-HAL/S segments is specific

and localized, rather than global, the alternative is

to create the segments as externally defined procedures

or functions. The linkage between the segments and the

HAL/S software may either conform to the standard HAL/S

conventions for a particular implementation, or may take
one of a number of alternative forms which have been

predefined in the implementation.

31-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

31,1 %MACROS

The "%macros" defined in any implementation of a HAL/S

compiler system, effectively constitute implementation

dependent extensions to the list of HAL/S built-in functions.

Their reference may cause a HAL/S compiler either to emit

in-line object code for their execution, or to emit linkages

to external routines, depending on the particular macro and

implementation.

%macros fall into two classes:

TYPED %MACROS, which are known by an implementation

to be of a particular HAL/S data type, and which are

invoked as if they were built-in functions, returning

a value of the specified type;

TYPELESS %MACROS, which are known by an implementa-

tion not to be of any HAL/S data type, and which

are invoked by executing a specific "%macro call"

statement, as if they were procedures.

Either class of invocation uses the same construct to reference

the %macro.

31-2

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

FORMOF %MACROREFERENCE

The construct referencing any %macro (typed or typeless)

specifies the name of the %macro, and a list of arguments

to be transmitted. Its form is as shown below:

IQ

•

•

1 n
%name(a_g , arg)

%name is the name of the %macro.

The HAL/S compiler knows it as a

%macro name because its first

character is always the % symbol.

arg I .a_g n, is a list of arguments

by which values may be passed

potentially both into and back from

the %macro. The number of arguments

and their form is dependent on the

functional specification of the

%macro.

The entire parenthesized argument

list may be omitted•

Examples:

%NAMECOPY(A,B)

%svc(5)

INVOKINGTYPED %MACROS

A typed %macro may possess any one of the HAL/S data

types given below:

INTEGER

SCALAR

VECTOR

MATRIX

CHARACTER

BIT STRING (including BOOLEAN)

STRUCTURE

31-3

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Such a %macro is expected to return one or more values

consistent with its type, and must therefore only appear

in contexts legal for that data type.

Examples:

If S is a scalar, V is a 3-vector and

%UCALC is a 3-vector %macro,

then

I
! S = S + V,%UCALC(5) ;
i

contains a legal invocation, but

I
! DO WHILE %UCALC(5);
I

contains an illegal invocation because

%UCALC does not return a bit string.

INVOKINGTYPELESS%MACROS

Typeless %macros do not return values, except through

their argument lists. They are invoked by "%macro call"

statements, whose form is shown below:

•

%macro-ref erence ;

%macro-reference is a %macro

reference as described above.

Examples:

I

i %SWAP;i
i IF A = B THEN %EXIT(FALSE);

Currently-defined %macros

are given in Spec./Appendix I.

31-4

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

31,2 REFERENCINGNON-HAL/SPROCEDURESAND FUNCTIONS

Non-HAL/S code segments can be designed so that they can

be invoked from HAL/S software as if they were HAL/S

procedures or functions. In designing such segments a

choice of linkages to the HAL/S software is availablel

the standard HAL/S linkage for the particular

implementation;

one of a number of alternate linkages predefined

for the particular implementation.

How these non HAL/S code segments are indicated as such

in the HAL/S software invoking them, depends on the forms

of linkage chosen.

STANDARDHAL/SLINKAGE

Standard HAL/S linkage to an external procedure or function

will be assumed by a HAL/S compiler if it believes the external

block to have been written in HAL/S. It will believe this if

a suitable template for the external block is included in the

compilation unit invoking it. External procedure and function

blocks and block templates have been described in Section 15.

The relationship between the block name appearing in the

template and the actual name of the object module of the non

HAL/S code segment is implementation dependent*.

The relationship must be correct otherwise the "link

editing" of object modules will be unsuccessful. See

appropriate User's Manual for naming conventions.

31-5

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

Example:

F: FUNCTION(I) SCALAR;

DECLARE I INTEGER;

CLOSE F;

P : PROGRAM;

CLOSE P;

X = X + F(K);

invocation of F

template effectively describes

the non HAL/S segment's linkage

to the HAL/S program P.

/
• o

4" • o p. • °

0o •

%

non HAL/S segment named

after F has standard

linkage to accept one

halfword integer argument,

and return a single

precision scalar result.

If a particular implementation of the HAL/S compiler

system includes a software management scheme for insuring

the consistency of templates and object modules, as alluded

to in Section 15.1, it may not be permissible to use this

method for invoking a non HAL/S code segment• (In such

cases it would be natural to let one of the predefined

alternate linkage forms be the standard linkage itself).

31-6

INTERMETRICSINCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

ALTERNATELINKAGES

An alternate linkage to an external procedure or function

is specified through the appearance of a declaration of

the procedure or function in the compilation unit invoking

the non HAL/S code segment.

As before, the relationship of the declared block name and

the actual name of the object module of the segment is

implementation dependent.

PROCEDURE FORM

The basic form of declaration for a procedure is:

!

DECLARE name_ PROCEDURE NONHAL(n) ;

o nam£ is the HAL/S identifier name by

which the segment is known.

• The unsigned integer n specifies which

alternate linkage is to be assumed*.

Examples:

DECLARE P1 PROCEDURE NONHAL(3) ;

The declaration can be combined with any other
kinds of declaration -

DECLARE S SCALAR,

P1 PROCEDURE NONHAL (2) ,

C CHARACTER (80) ;

Its attributes can be factored thus:

l

t DECLARE PROCEDURE NONHAL(1), PI, P2, P3;I

* The linkage corresponding to each value of n in a given

implementation is given in the appropriate User's Manual.

3]- 17

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Procedure invocations compatible with declarations

of the above form may contain any number of input and

assign arguments, including none. It is possible that

in some linkage forms the number of arguments could

vary from invocation to invocation. Implementation

dependent restrictions upon the arguments may exist*.

• FUNCTION FORM

The basic form of declaration for a function is:

I DECLARE name FUNCTION att2uLbut_ NONHAL(n);

i. name is the HAL/S identifier name by

which the segment is known.

. attn/but_ specify the type and pre-

cision of the function, as in the

opening statement of a function defin-

ition (see Section 11.2).

1 The unsigned integer n specifies which

alternate linkage is to be assumed**.

Examples:

i
! DECLARE F1 FUNCTION SCALAR NONHAL(1);
! DECLARE F2 FUNCTION MATRIX(3,3) DOUBLE NONHAL(2) ;
i
l

As before several declarations can be combined with

factoring:

i
! DECLARE NONHAL(3), F3 FUNCTION INTEGER, P PROCEDURE;
i

* See appropriate User's Manual.

** The linkage corresponding to each value of n in a given

implementation is given in the appropriate User's Manual.

31-8

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

Function invocations compatible with declarations of

the above form are subject to the following:

• they must possess at least one argument;

arrayed arguments are passed in a single

invocation rather than causing multiple

elemental invocations as described in

Section 20.6.

Other implementation dependent restrictions upon the

arguments may exist*.

The following example shows the invocation of non HAL/S

code segments by the alternate linkage method:

Example:

Z : PROGRAM;

DECLARE P PROCEDURE NONHAL(1);

DECLARE F FUNCTION NONHAL (2);//

/J
ASS IGN(B) ; _//

CALL P (A)

X = X +

CLOSE Z ;

\
F (K) ;) \

invocati on

of F

invocation

of P

• ••

%• .'• • "

\
non HAL/S segment

named after P has

linkage conforming to

NONHAL (i) specification

• •• ,

% °

non HAL/S segment named

after F has linkage

conforming to NONHAL (2)

specification

* See appropriate User's Manual.

31-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

32, SUMMARYOF PARTII

Part II of the Programmer's Guide has described the more

advanced constructs in the HAL/S language. Parts I and II

have between them covered the whole of the broad scope of

HAL/S. Only certain minor and relatively unimportant

variations on a few constructs have been omitted. Where

this happens, suitable references to the Language Specifi-

cation Document have been given instead.

32-1

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

A. STANDARDCONVERSIONFORMATS

In relatively limited circumstances HAL/S allows conversions

between scalar, integer, bit string, and character types.

The following rules govern such conversions.

CONVERSIONS TO INTEGER TYPE:

A bit string is converted to integer type by regarding

it as the bit pattern of a signed integer of the desired

precision (halfword or fullword). Left padding with

binary zeroes, or left truncation may occur.

A scalar type is converted to integer type by rounding

to the nearest whole number. Overflow errors may occur

if the absolute value of the scalar type is too large

to be represented as an integer of the desired precision.

A character type is convertible to integer type only

if its value represents a signed whole numberp (e.g,

'-604') or is null, otherwise an error condition occurs,

An error condition also occurs if the whole number is

too large to be represented as an integer of the desired

precision. A null string is converted to a zero value.

CONVERSIONS TO SCALAR TYPE:

An integer type is converted directly to scalar form.

Depending on the implementation, and the precisions,

some decimal places of accuracy maybe lost during
conversion.

A bit string type is converted to scalar type by first

converting it to double precision integer type according

to the rule previously given, and then applying the

integer to scalar conversion.

A character type is convertible to scalar type only

if its value represents a legal scalar- or integer-valued

literal (e.g. "-1.5E-7') or is null. Other values

cause error conditions to arise. A null string is con-
verted to a zero value.

BE

A-1

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CONVERSIONS TO BIT STRING TYPE:

An integer type is converted to a bit type of fullword

or halfword length as appropriate to the precision of the

integer. The value is the bit pattern of the integer.

A scalar type is first converted to double precision

integer type according to the rule already given, and the

integer to bit conversion rule is then applied.

A character type is convertible to bit type only if its

value is a string of 'l's and 'O's, and blanks, (but not

all blanks), otherwise an error condition arises. The result

of the conversion is always a maximum length bit string,

irrespective of the argument type. If the argument has more

than N bits, where N is the maximum allowable length of a

bit operand, then only the N right-most are used. If the

argument has fewer than N bits, the string is padded on

the left with binary zeros.

CONVERSIONS TO CHARACTER TYPE:

• An integer type is converted to the representation

dddd (positive)

-dddd (negative)

where dddd represents an arbitrary number of decimal

digits. Leading zeroes are suppressed.

• A scalar type is converted to the representation

Md.ddddE+dd (positive)
D

-d.ddddE+dd (negative

0.0 (zero)

The number of decimal digits d in the fractional part

and exponent are implementation and precision dependent.

The digit to the left of the decimal point is non-zero.

There are no imbedded blanks. Leading zeros in the

exponent are not suppressed. The representation

includes a leading blank (M).

A bit string type is converted to a character string of 'l's

and '0's corresponding to the binary representation of

the bit string argument. Blanks are inserted every four

characters from the right for readability.

A-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

The following rules characterize precision conversions

in the HAL/S language.

PRECISION CONVERSION OF INTEGERS

In any implementation double precision integers are

represented by M binary digits, and single precision

integers by N binary digits, where M > N. Any double

precision integer value with K significant binary digits

is converted to single precision as follows:

• If K _ N the value of the integer remains intact.

If K > N the K - N most significant binary

digits are lost.

Conversion from single to double precision entails no

change in value.

PRECISION CONVERSION OF SCALARS

In any implementation double precision scalars are converted

to single precision by truncation of an implementation

dependent number of binary digits of its mantissa. If

the characteristic of the double precision value cannot

be represented in single precision, a run time error may
Occur.

Conversion from single to double precision entails no

change in value.

A-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

B, BUILT-INFUNCTIONS

HAL/S typically supports the following set of built-in functions.

Minor variations may arise between implementations.

ARITHMETIC FUNCTIONS

Q Arguments may be of integer or scalar type.

• In functions with one argument, result type matches

argument type (except as specifically noted).

In functions with two arguments, result type is

scalar if either or both arguments are scalar;

otherwise the result type is integer .

Arrayed arguments cause multiple invocations of

the function, one for each array element; arraynesses

of arrayed arguments must match.

Name, Arguments

CEILING (e)

DIV(_,B)

FLOOR (e)

MOD (_, 8)

ODD (_)

REMAINDER (_, B)

ROUND (_)

SIGN (a)

SI GNUM (_)

TRUNCATE (_)

Comments

nu _

smallest integer >

integer division e/8 (arguments

rounded to integers)..

largest integer _<

the smallest non-negative value

that can be reached by starting

from or., and adding or subtracting

I(31 as often as is necessary

TRUE 1 if e odd _ result is

FALSE 0 if e even _ Boolean

siqned remainder of integer division
a/_ (argument rounded to integer)

nearest integral value to

+i _ > 0

-i e _0

+I _ > 0

0 c_ = 0

-i _ < 0

largest integer < lel times

SIGNUH (integer _))

B-I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ALGEBRAIC FUNCTIONS

Arguments may be integer or scalar types; conversion

to scalar occurs with integer arguments.

• Result type is always scalar.

• Arrayed arguments cause multiple invocations of the

function, one for each array element.

• Angular values are supplied or delivered in radians.

Name, Arguments

ARCCOS (e)

Comments

-I
COS iel< 1

-i
ARCCOSH (_) cosh _ e > 1

ARCSIN(e) sin-i _ , lel < 1

ARCSINH (_) sinh -I e

ARCTThN2 (_, _)

ARCTAN (e)

ARCTANH (_)

cos (_)

-z < tan-l(e/B) <

Proper Quadrant if:

= k sin 8 k > 0
= k cos 0 !

-i
tan

tanh -I _ l_I < 1

COS O',

COSH (_) cosh e
l

e

EXP (_) e

LOG(a) _ > 0

SIN(e)

SINH (e)

SQRT (e)

iog e e ,

sin
,., ,,

s i nh

/'d , .c_> 0

TAN (_) tan

TANH (_) tanh <_

B-2

INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

VECTOR-MATRIX FUNCTIONS

• Arguments are vector or matrix types0 as indicated.

• Result types are as implied by mathematical operation.

• Arrayed arguments cause multiple invocations of the

function, one for each array element.

Name, Arguments Comments

ABVAL(e) length of vector e

DET(e) determinant of square matrix

INVERSE(s)

TRACE (e)

TRANSPOSE (e)

inverse of nonsingular square

_t[ix

sum of diagonal elements of square

matrix e

transpose of matrix

UNIT(s) unit vector in same direction

as vector e

B-3

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

MISCELLANEOUS FUNCTIONS - !

• No arguments.

• Result type is integer or scalar_ as indicated.

Name Result Type Comments

CLOCKTIME scalar returns time of day

DATE integer

ERRGRP

ERRNUM

PRIO

RANDOM

RANDOMG

RUNTIME

integer

integer

integer

scalar

scalar

scalar

returns date (implementation

dependent format)

returns group number of last

error detected, or zero

returns number of last error

detected, or zero

returns priority of process

calling function

returns random number from

rectangular distribution over

range 0-i

returns random number from

Gaussian distribution mean

zero, variance one.

returns Real Time Executive

clock time.

B-4

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

MISCELLANEOUS FUNCTIONS - II

• One argument.

• Result type is scalar.

Name, Argument Result Type Comments

is a process name.

One of the following

is returned:

NEXTIME(_) scalar

If the process _ was

cyclic and scheduled

with a REPEAT EVERY

clause, and the pro-

cess has been initi-

ated then the time

of the beginning of

the next cycle is

returned.

If the process _ was

scheduled with an IN

or AT condition and

has not yet been

initiated, the time

that initiation is

due is returned.

If neither of the

above is true, the
current RTE clock

time is returned.

B-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661 1840

CHARACTER FUNCTIONS

• First argument is character type; second argument

is as indicated (any argument indicated as character

type may also be integer or scalar, whereupon conver-

sion to character type is implicitly assumed).

Result type is as indicated.

Arrayed arguments produce multiple invocations of

the function, one for each array element; arraynesses

of arrayed arguments must match.

Comments
Name, Arguments Result Type

INDEX(e,6) integer

LENGTH(e)

LJUST (e, 6)

RJUST (_, 6)

TRIM(s)

integer

character

character

character

B is character type - if string

appears in string _, index point-

ing to the first character of 6 is

returned; otherwise zero is re-

turned

returns length of character

string

is integer type - string e is

expanded to length B by padding

on the right with blanks

B _ length (e)

6 is integer type - string e is

expanded to length 6 by padding
on the left with blanks

8 _ length (_)

leading and trailing blanks are

stripped from

B-6

INTERMETRICS INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

ARRAY FUNCTIONS

-o Arguments are n-dimensional arrays_where n is

arbitrary •

Arguments are integer or scalar type.

Result type matches argument type and is

unarrayed.

Name, Argument

MAX (_)
m

MIN (_)

PROD (e)

SUM(s)

Comments

maximum of all elements of

minimum of all elements of

product of all elements of

sum of all elements of

|i

B-7

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Name, Argument

SIZE(e)

SIZE FUNCTION

Comments

One of the following must hold:

is an unsubscripted arrayed
variable with a one-dimension-

al array specification -

function returns length of

array.

is an unsubscripted

structure with a multiple

copy specification -

function returns number of

copies.

is an unsubscripted

structure terminal with a

one-dimensional array speci-

fication - function returns

length of array.

Result is of integer type.

B-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

C, ORDERINGOF DATA ELEMENTS

There are numerous kinds of operation in the HAL/S

language which require operands with multiple components,

array elements, and structure copies to be unraveled into

a linear string of data elements. The reverse process of

"reraveling" a linear string of data elements into components,

array elements, and structure copies also occurs. Two

instances of these processes are in I/O and in conversion

functions. The former process is also involved in relating

initial lists to the data items they initialize.

The standard order in which this unraveling and reraveling

takes place is called the "natural sequence". By applying

the following rules in the order they are stated, the

natural sequence of unraveling is obtained. By applying

the rules in reverse order, and replacing "unraveled" by

"reraveled", the natural sequence for reraveling is obtained.

RULES FOR STRUCTURES:

l. If the operand is a structure with multiple copies,

each copy is unraveled in turn, in order of increasing

index. If the operand is a minor structure node in

a multiple-copy structure, then the copy of the minor

structure in each structure copy is unraveled in turn

in order of increasing index.

Q The method of unraveling a copy is as follows. Each

structure terminal which is part of the given structure

operand is unraveled in turn. The order taken is

the order of appearance of the terminals in the

structure template.

. Each structure terminal is unraveled according to the

Rules given below.

Examplez

STRUCTURE A:

1 B,

2 C SCALAR,

2 D VECTOR(3),

1 E INTEGER;

DECLARE A A-STRUCTURE (3) ;

• order of unraveling of B is BZ, i = 1,2,3

• order of unraveling of each B i is Ci, D i

C-I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

RULES FOR OTHER OPERANDS:

le An operand of any type (integer, scalar, vector, matrix,

bit string, character, or event) may possess arrayness

as described in Section 20.1. Each dimension of

arrayness, starting from the leftmost is unraveled

in turn, in order of increasing index.

• Integer, scalar, bit string, character, and event

types are considered for unraveling purposes as

having only one data element.

Be Vector types are unraveled component by component, in

order of increasing index.

e Matrix types are unraveled row by row, in order of

increasing index. The components of each row are un-

raveled in turn in order of increasing index.

Example:

DECLARE V ARRAY(2,2) VECTOR(3) ;

• order of unraveling of V is V i ,

• order of unraveling of each Vi,

j = 1,2

i = 1,2

is V.
_,j:. t

is Vi,• order of unraveling of each Vi,j:. j:k

k = 1,2,3

C-2

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

D, COMPILE-TIMECOMPUTATIONS

References have been made in the Guide to the fact that in

certain restricted cases, expressions which are computable
at compile time may be substituted for literal values.

Among the constructs allowing such substitutions are!

• initial lists in declarations;

• specification of dimensions or lengths in declarations;

• subscripting.

Only the restricted forms of integer, scalar, bit string and
character expressions to be described can be used in such

contexts. These forms are guaranteed to be computable at
compile time in any implementation,

|E

ARITHMETIC EXPRESSIONS

i. Expressions of integer and scalar type only can be

computable at compile time.

. The operators of such expressions are limited to the
following:

+

(multiply)

/

Q The operands of such expressions may either be literals

or unarrayed unsubscripted data items of integer or

scalar type. Such data items must previously have been

declared, and initialized using the CONSTANT form,

4. The following built-in functions are also legal:

SIN EXP DATE

COS LOG CLOCKTIME

TAN SQRT

DATE and CLOCKTIME are only computed at compile time if
they appear in an initial list.

D-I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

BIT STRING EXPRESSIONS

l. The operators which may appear in bit string expressions

computable at compile time are limited to the following

set:

• The operands of such expressions must be either literals

or unarrayed unsubscripted data items of bit string type.

Such data items must previously have been declared, and

initialized dsing the CONSTANT form.

CHARACTER EXPRESSIONS

i. The catenation operator (II) only may appear in character

expressions computable at compile time.

• The operands of such expressions must be either literals,

arithmetic expressions computable at compile time, or

unarrayed unsubscripted data items of character type.

Such data items must previously have been declared,

and initialized using the CONSTANT form.

In some implementations, additional forms may also be computed

at compile time. They will not, however, be regarded as legal

in contexts where compile time computability is enforced by

the rules of the HAL/S language.

D-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

E, HAL/SKEYWORDS

ACCESS

AFTER

ALIGNED

AND.

ARRAY

AS SIGN

AT

AUTOMATIC

BIN

BIT

BOOLEAN

BY

CALL

CANC E L

CAS E

CAT

CHAR

CHARACTER

CLOSE

COLUMN

COMPOOL

CONSTANT

EXCLUSIVE

EXIT

EXTERNAL

FALSE

FILE

FOR

FUNCTION

GO

HEX

IF

IGNORE

IN

INITIAL

INTEGER

LATCHED

LINE

LOCK

MATRIX

NAME

NONHAL

NOT

NULL

READ

READALL

REENTRANT

REPEAT

REPLACE

RESET

RETURN

REMOTE

RIGID

SCALAR

SCHEDULE

SEND

SET

SIGNAL

SINGLE

SKIP

STATIC

STRUCTURE

SUBBIT

SYSTEM

DEC

DECLARE

DENSE

DEPENDENT

DO

DOUBLE OCT UNTIL

OFF UPDATE

ELSE ON

END OR VECTOR

ERROR

EVENT PAGE WAIT

EVERY PRIORITY WHILE

PROCEDURE WRITE

PROGRAM

TAB

TASK

TEMPORARY

TERMINATE

THEN

TO

TRUE

E-1

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

F, STANDARDINPUT/OUTPUTFORMATS

Corresponding to each data type there exists a "standard

input/output format"'for the representation of its values

on sequential I/O devices. In any implementation the

standard output format is fixed; on _ the user has

a certain flexibility in the format he can use.

OUTPUT FORMATS

i. Inte@er Type:

An integer value is represented by a string of

decimal digits, preceded if it is negative by

a - sign. Leading zeroes are suppressed.

The string of digits is right justified in a field

of fixed width. The width depends on the implemen-

tation, and on the precision of the integer.

2. Scalar Type:

If a scalar value is positive it is represented

by

_d.dddddddE±dd

where d represents a decimal digit. One non-zero

digit appears before the decimal point. The numbers

of digits in the fractional part and exponent are

fixed, and depend on the implementation and the pre-

cision of the scalar. Leading zeroes in the exponent

are not suppressed. The representation includes a

leading blank (M).

• A negative value has the same form except that a - sign

precedes the first decimal digit.

• If the value is exactly zero, it is represented as 0.0.

The representation of a scalar value is contained in

a field of fixed width. The width is dependent on the

implementation and the precision of the scalar. Justifi-

cation is such that the decimal point occupies a fixed,

precision dependent position in the field.

F-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3. Bit String Type (including Boolean):

• There are two different representations of bit string

values.

The first representation consists merely of a string

of binary digits. Leading binary zeros are not sup-

pressed. The field width is equal to the number of

binary digits in the string plus an inserted blank

following every fourth digit (to enhance readability).

This form is not compatible with the READ input.

In the alternate representation, the string of binary

digits plus inserted blanks is enclosed in the apostro-

phes. The field width is equal to the total of the

number of digits, blanks and two apostrophes.

4. Character T[pe:

• There are two different representations of character

values.

The first representation merely consists of the

string of characters comprising the value. The

field width is equal to the number of characters

in the string. This representation is not compatible

with READ input.

In the alternate representation, the string of

characters is enclosed in apostrophes, and all

internal apostrophes are converted to apostrophe

pairs. The field width is equal to the total number

of characters in the string, including added apostro-

phes.

NOTE: The two alternate representations for bit string and

character types occur in output to paged and unpaged devices

respectively.

F-2

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

INPUT FORMATS

i. Scalar and Integer Types:

• There are two basic representations, whole-number

and floating-point.

The whole number representation consists of a string

of decimal digits preceded by an optional - sign.

The maximum number of digits allowed is implementation

dependent. Conversion to mantissa-exponent form takes

place for scalar types.

• The floating-point representation is either

ddd. dddd

or IEIdddd. dddd B +dd

H

where d is a decimal digit. Any number of digits

is allowed in the mantissa to an implementation

dependent maximum. The decimal point may appear in

any position. E,B, and H represent the exponent

digits to be powers of 10,2 and 16 respectively.
A choice of one is indicated. The maximum number of

digits in the exponent is implementation dependent.

For bit and integer types, the representation is

rounded to the nearest integral value. For bit

types the binary representation of the result is

taken.

The floating-point representation may be prefixed

by + or - signs to indicate the sign of the value.

Without such prefix the value is positive.

F-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

• Character Type:

The representation of character type is a string

of characters from the HAL/S character set enclosed

in apostrophes. The number of characters may vary

between zero (a "null string") and an implementation

dependent maximum• Within the string apostrophes

must be represented by an apostrophe pair.

3. Bit String Type:

The representation of bit string type is a string of

'l's and '0's enclosed in apostrophes. Imbedded

blanks are ignored. The number of digits may vary

between one and an implementation maximum.

F-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INDEX

ACCESS

Access

Access Control

Access to Code

Addition

ALIGNED

AND (&)

ARCCOS

ARCCOSH

ARCSIN

ARCSINH

ARCTAN

ARCTAN 2

Arithmetic Operations

ARRAY

Array

Array Processing

Array Subscripting

Arrayed Bit String

ASSIGN

Assign Parameters

30-2

See Data Access, Chapt. 26

28-7, 30-1, 30-3

30-1

30-4

7-3 , 7-23

26-3, 28-7, 26-4

7-20, 7-22, 7-24,

17-7, 17-9, 17-11, 24-6

B-2

B-2

B-2

B-2

B-2

B-2

7-1, 7-23

4-8, Chapter 18,

Chapter 20, 28-7

4-8, 4-12, 17-6

Chapter 18, Chapter 20,

24-5, 28-7, 28-26,

28-34, 28-37, 28-42,

31-9

Chapter 20

6-1, 6-8, 6-10,

18-3, 20-13, 22-10

17-6

11-3, 11-14, 11-15

II-i, 17-18, 19-39,

20-20, 28-40, 31-8,

31-9

Index-i

INTERMETRICSINCORPORATED'701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

Assignment

AT

Attributes

AUTOMATIC

BIN

BIT

Bit String (Data Type)

Bit String Assignment

Bit String Operation

Bit String Subscripting

Block Closing

Block Definition

Block Opening

Block Structure

BOOLEAN

Boolean (Data Type)

Boolean Operations

Branching

Breakpoints

Built-in functions

C-line

CALL

CANCEL

Index-2

Chapter 8, 17-12,

19-33, 20-9, 20-12,

• 28-31, 28-33

13-16, 13-17

See Dense Attributes

16-5, 16-7, 19-7,

27-10, 28-7

17-1, 21-12, 21-16

17-3, 21-9, 21-16

Chapter 17, 21-9,

24-22, 28-3, 28-7

Appendix A, Appendix F

17-12

17-7, 22-10

17-4, 17-18

11-4, 13-10, 15-6

11-2 , 30-4

11-3, 11-4, 13-10,

15-6

1-2

4-2, 4-7, 4-9, 4-11,

11-7, 19-13, 21-10,

28-7

4-2, 4-7, 17-1, 24-22,

28-3, 28-7

7-20, 7-24

1-9, 9-1, 9-15, 10-15

13-5

7-32, 20-6,

Appendix B

2-11

2-10, ii-i, 11-14

23-10, 23-18, 26-21,

28-2, 29-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

CAT 7-18, 7-23, 7-24,

17-10, 17-11, 24-6

Catenation 7-18, 7-23, 17-7,

17-10, 17-11

CEILING B-I

Channel (I/O) 12-1, 12-4, 12-8,

22-5

CHARACTER 4-2, 4-7, 4-9, 4-11,

11-7, 19-13, 21-13, 21-16,

28-7

Character (Data Type) 4-2, 4-7, 6-2, 21-15,

21-23, 22-10, 28-3, 28-7,

Appendix A, Appendix F

Character Conversion 21-13

Character Operations 7-18

Character Set 2-1

CLOCKTIME 20-7, B-4

CLOSE 3-2, 11-4, 11-19, 13-10,

13-12, 15-6, 23-9

COLUMN 12-15, 22-5

Comments 2-10, 2-11

Comparative Operation 9-7, 17-15, 20-16

Compilation Unit

Component Subscripting.

COMPOOL

C_poo!_:!:Ulosing

CompoOl Opping

Compound Data Declarations

Compound Statements

L ;74" .•
C%MSUB

i:""_'_15-3';'_. 15-5, 23-1, 30-1

" CEapter,_;"23-3, 26-6,

• 26-15, 2/6-17, 30-1,

;'_'J 30-2

" J[01-9
4 ,-.5' ,, j _ ._

_ " _3,Cl_al_!_er ;5_. 23-3, 30-1

Index- 3.. :-.,_:_-:-a_ : _z _, '

P,fT.Lr_IcC_I_tCORPORATED- 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1840

Conditional Statement

CONSTANT

Continuation lines

Conversion

COS

COSH

Cross Product

Cyclic Process

Data Access

Data Conversion

Data Declaration

Data Initialization

Data Ordering

Data Packing Density

Data Scope

Data Security

Data Storage

Data Structure

Data types

DATE

DEC

DECLARE

9-1, 19-36

4-10, 4-11, 16-1, 16-3,

16-5, 19-7, 19-12, 28-7

2-10

7-17, 7-18, 7-26, 8-6,

9-11, 11-9, ii-i0, ii-ii,

11-14, 11-15, Chapter 21,

22-3, Appendix A

7-33 , B-2

B-2

7-7, 7-23

23-9, 23-11, 23-18, 24-13

Chapter 26, 30-1, 30-2,

30-3

See Conversion

1-4, 3-2, Chapter 4,

11-6, 15-1, 15-3, 15-7,

15-8, 17-3, 18-1, 19-9,

24-3, 26-2, 26-10, 26-14,

26-17, 27-10, 28-3, 30-2

4-10, 4-12, Chapter 16,

19-12, 24-4, 26-14, 28-28

26-6, Appendix C

26-2

See Scoping of Data

26-1, 26-15

Chapter 26

See Structure

4-1, 7-1

7-34, B-4

17-1, 21-12, 21-16

2-10, 4-3, 4-12, 16-3,

16-5, 17-3, 18-1, 19-9,

-24-3, 26-11, C-I
Index-4

INTERMETRICSINCORPORATED.701 CONCORD AVENUE-CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

DENSE

DEPENDENT

DET

Device Attributes

Device Mechanism Positioning

DIV

Division

DO

DO CASE

DO FOR

DO UNTIL

DO WHILE

Dot Product

DOUBLE

Double Precision

E-line

ELSE

END

ERRGRP

ERRNUM

ERROR

Error Detection

Error Environment Modification

Error Recovery

Error Scope

Error Simulation

Index-5 _

26-2 , 28-7

13-14, 24-13

B-3

12-18, 22-5

12-12, 12-15, 22-5

7-32 , B-I

7-5, 7-23

1-7, 10-2, 26-13

10-13

10-8, 10-12, 26-14

10-7

10-5, 10-7, 17-13,

19-36

7-6, 7-23

4-3, 4-6, 4-9,

28-7

4-2, 4-3, 4-4, 4-5,

4-6, 4-9, 28-7

2-9

9-4

1-9 , 10-3

B-4

B-4

25-5

25-2

25-4

Chapter 25

25-3

Chapter 25

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r

J

EVENT

in Boolean context

Event (Data Type)

Process Event

Event Expression

EVENT LATCHED

EXCLUSIVE

Exclusive Function

Exclusive Procedure

EXIT

EXP

Exponent

Exponentiation

Matrix

Precedence

Expression

Expression type

EXTERNAL COMPOOL

External Data Declaration

EXTERNAL FUNCTION

External Function

EXTERNAL PROCEDURE

External Procedure

EXTERNAL PROGRAM

FILE

FLOOR

24-3 , 28-7

24-22

Chapter 24, 26-14, 28-3,

28-5, 28-7

24-23

24-5, 24-13, 24-20

24-3

27-2, 27-6

27-2

27-2

10-15, 10-17

7-33 , B-2

2-8, 2-9, 29-10

7-2

7-13

7-23

Chapter 7, 24-5, 24-13,

24-20, Appendix D

(see under individual type

of expression)

7-1

15-8, 15-12, 23-5,

26-7

15-1, 15-8

15-11

15-3, 15-8, 15-11, 27-1,

27-2, 27-7, 30-4, 31-7

15-9

15-3, 15-8, 27-1, 27-2,

27-7, 30-4, 31-7

23-5

22-5

B-I

Index-6

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138"(617) 661-1840

Flow of Execution

Formats (I/O)

FUNCTION

Exclusive

Function

Function Block

Function Invocation

Function Return

GO TO

HAL/S Linkage

HEX

Horizontal Positioning (Device)

Identifier

Identifier Generation

IF

IGNORE

Implied Repetition

IN (in relative cyclic processes)

Independent Compilation

INDEX

Indirection"

See Program Flow

12-6, 12-9, 12-11,

22-3, Appendix F

11-4, 16-6, 17-20, 20-18,
27-2

Chapter ii, 16-6, 17-17,

17-20, 19-38, 19-41,

20-18, 26-21, 29-9, 31-7,
31-9

1-2, 11-1,.11-4, 26-21

11-8, 26-21, 28-42,

29-9, 31-9

11-20, 19-42

1-9, 9-1, 9-15,

9-17 , 9-18

31-5

17-1, 21-12, 21-16

12-12, 22-5

2-22 , 2-3, 29-8

29-8

9-1, 17-13, 19-36

25-7

16-1

13-15, 13-17

1-8

B-6

28-1, 28-8, 28-18, 28-26,

28-28, 28-34, 28-37, 28-40,
28-44

Index-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

INITIAL

Structure Initialization

Initialization of Data

Inline Function

Inner Product

Input/Output

Input Parameters

INTEGER

Integer (Data Type)

Interface to Non-HAL/S Code

INVERSE

Inversion

Keywords

Label

Latched Event

LENGTH

LINE

Literals

LJUST

Load Module

Local Data

LOCK

4-10, 4-11, 16-1, 16-3,

16-5, 19-7, 19-12, 28-7,

19-12

See Data Initialization

29-9

See Dot Product

Chapter 12, 17-21, 19-43,

20-25, Chapter 22, 26-12,

28-44, 29-10, Appendix F

ii-I, 17-18, 19-39, 20-20,

22-10, 26-25, 28-40, 29-2,

29-9, 31-8, 31-9

4-1, 4-3, 4-9, 4-11,

II-i0, 19-13, 21-3,

28-7

4-1, 4-3, 21-3, 28-3,

28-7, Appendix A,

Appendix F

Chapter 31

7-33, B-3

7-13, 7-15

Appendix E

See Statement Level

24-2, 24-3, 24-8,

24-9, 24-10

7-34, B-6

12-15, 22-5

2-2, 2-4

B-6

23-1

11-6, 13-11, 26-21, 27-10,

27-11, 29-10

26-17

Index-8

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138"(617) 861-1840

Lock Data Group

LOG

Looping

M-line

Macro

Major State

Managerial Control

MATRIX

Matrix (Data Type)

26-15

7-33, B-2

See Repetitive Execution of

Statement Groups

2-9

,_pter 29, 30-3, 31-2

See Process State

Chapter 30

4-1, 4-5, 4-9, 4-11,

11-9, 19-13, 21-7, 28-7

4-1, 4-5, 4-12, 6-5,

21-1, 22-10, 28-3,
28-7

Inversion, exponentiation, transpose 7-13

MAX

MIN

Minor Structure Nodes

MOD

Multi-dimensional Array

Multi-line instruction format

Multi-Processing

Multi-valued initialization

Multiple Copy Structure

Multiplication

NAME

Pseudo function

Name (Data Type)

Name Assignment

Name Comparison

Name Facility

Index-9

7-34, B-7

7-34, B-7

19-5, 19-6, 19-17, 19-20,

19-33, 19-43, 22-10

B-I

Chapter 18

2-9

13-2

4-11, 16-1

19-11, 19-12, 19-43

7-8, 7-23

28-3

28-16

28-2 , 28-3

28-31

28-36

Chapter 28

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 681 !840

Name Pseudo-Function

Negation

Nested Structure

NEXTIME

Node

Structure node name

NONHAL

Non-HAL/S Code

NOT (-I)

NOT = (-n=)

NOT > (-n >)

NOT < (-_ <)

NULL

Null Pointer

Object Module

OCT

ODD

OFF ERROR

ON ERROR

Operand/Operations
Arithmetic

Precision Conversion

Character

Boolean

Event

Comparative

Operator Precedence

oR (I)

Ordering of Data

28-16, 28-28, 28-40

7-2 , 7-23

19-14, 19-22

B-5

19-20

31-7 , 31-8

Chapter 31

7-20, 7-24, 17-7, 17-11

24-6

9-7 , 9-13

9-7, 9-10, 9-13

9-7, 9-10, 9-13

28-28, 28-30

28-28

23-1

17-1, 21-12, 21-16

7-32 , B-I

25-4, 25-11

25-4, 25-6, 25-9

7-3 to 7-16

7-17

7-18

7-20 to 7-22

24-6

9-7, 17-15, 20-16

7-23, 9-13, 17-11,

28-39

7-20, 7-24, 17-7, 17-8,

17-11, 24-6

See Data Ordering

Index-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Outer Program Block

PAGE

Paged device

Parameter

Parameter Declaration

Parentheses

in changing precedence

Partial Initialization

Pointer

Positioning

Horizontal and Vertical

Precedence

Precision

Precision Conversion

Primal Process

Primal Program

PRIO

PRIORITY

Priority

PROCEDURE

Procedure

External Procedure

Exclusive

Procedure Block

Procedure Invocation

Process

Index-ll

See Program Block

12-.15

!2-]._ .. -...,,..l--_, 12-7

See Assign Parameters

Input Parameters

]i-.6

7-25

3.6-4

See Indirection

12-12, 22-5

See Opeza._or Precedence

See Double Precision

See Co_version

13-2, i_-7

23-i, 2 ii_--6

13-22, B-{

13-15, 2_-13

13-2, 13-6, 13-21, 13-25,

26-23

11-3, 16-6, 11-14

Chapter ii, 16-6, 17-17,

19-38, 20-18, 26-21

15-3, 15-8, 27-1, 27-7,

30-4, 31-7

27-1, 27-2, 27-7, 29-10,

31-7

1-2, ii-i, 11-3, 26-21

11-14, 26-21, 28-42, 29-10,
31-8

See Real Time Process

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

Process Dependency

Process Event

Process Queue

Cancel Statement in RTE

Event initiation

Process State

Process Swapping

PROD

PROGRAM

Program Block

Program Closing

Program Flow

Program Opening

Program Process

Program Structure

Qualified Structure Reference

Queue

Process Queue

RANDOM

Random Access (I/O)

RANDOMG

READ

READALL

13-7, 23-7

24-23

13-2, 13-4, 13-13, 13-18

23-19

24-13, 24-15

13-14, 13-18, 13-22, 23-7,

23-10, 26-22, 27-5, 27-9

13-5, 26-24

B-7

3-1

1-2, 1-5, Chapter 3,

15-3 , 23-5

3-1, 3-2

3-3, 13-12, 26-19

3-1

23-1, 23-6

i-i

19-16

13-2, 13-4, 13-5, 13-13,

13-18, 23-19, See Process

Queue

B-4

22-5, 28-45

7-34 , B-4

12-8, 20-25

12-11,• 22-1, 22-2

Index-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Real Time

Real Time Example

Real Time Executive

Real Time Process

Example

Recursion

Reentrancy

REENTRANT

Relational Expression

REMOTE

Reentrancy Requirements

REMAINDER

REPEAT

REPEAT AFTER

REPEAT EVERY

REPEAT UNTIL

REPEAT WHILE

Repetition Factor

Implied Repetition

Repetitive Execution of Statement Group 10-5

REPLACE

Replace Macro

RESET

Reserved Words

RETURN

Index-13

Chapter 13, Chapter 23,

Chapter 24, 26-1, 26-15,

26-19, 27-1, 27-7

13-23

13-1

13-1, 13-2, 13-12, 23-1,

23-6, 23-9, 25-2, 26-15,

26-19, 27-1, 27-7

13-23

1-5, 1-8, 29-5

Chapter 27

27-7, 27-11

9-7, 17-15, 20-16,
28-36

26-11, 28-7, 30-3

27-1, 27-11

B-I

10-15, 10-18, 10-20

23-14

23-16

23-11, 23-12, 24-17

24-15

16-3, 21-2, 21-7

16-1

Chapter 5, Chapter 29

Chapter 29, 30-3

24-9, 25-8

2-2

11-19, 11-21, 13-12,
17-21, 19-42, 23-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

RIGID

RJUST

ROUND

RUNTIME

S-line

SCALAR

Scalar (Data Type)

SCHEDULE

26-6, 26-11, 28-7

B-6

7-32, B-I

13-22, 20-7, B-4

2-9

4-1, 4-4, 4-9, 4-11,

11-10, 19-13, 21-3,

28-7

4-1, 4-4, 21-3, 28-3,

28-7, Appendix A,

Appendix F

13-2, 13-7, 13-13, 23-6,

23-9, 23-11, 23-18, 24-13,

26-21, 28-2, 29-10
e_

Scoping of Block Names 1-5, 11-2, 26-21

Scoping of Data 1-4

Selective Execution of Statement Groups 10-13

SEND ERROR

SET

SIGN

SIGNAL

SIGNUM

SIN

SINGLE

Single Copy Structure

Single Line Statement Format

Single Precision

25-17

24-9, 25-8

7-32 , B-I

24-10, 25-8

B-I

7-33 , B-2

SINH

SKIP

Source Text Format

Index-14

4-3, 4-6, 4-9, 28-7

19-9, 19-12, 19-43

2-8

4-2, 4-3, 4-4, 4-5, 4-6,

4-9, 28-7

B-2

12-15, 22-5

2-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Special Characters

SQRT

State

Statement delimiter

Statement Group

Statement Label

STATIC

Static Program Block

STRING

STRUCTURE

Structure

Structure Assignment

Structure Declaration

Structure Initialization

Structure Node Name

Structure Referencing

Structure Subscripting

Structure Template

Structure Terminal

Structured Programming

2-1

7-33, B-2

See Process State

2-10

1-9, Chapter i0, 26-13

9-1, 9-15, 26-19

16-6, 19-7, 27-10,
28-7

13-1, 13-7

6-2, 17-5, 17-7

19-1, 19-5, 28-7

4-2, Chapter 19, 20-2,
22-10, 24-5, 26-2, 26-6,

28-3, 28-7, 28-9, 28-10,

28-18, 30-3, Appendix C

19-33

19-4, 19-9, 19-22, 26-2,
26-6

19-12

19-20

19-16

19-22

19-4, 19-5, 19-21, 19-22,

19-28, 26-2, 26-6, 28-4

19-5, 19-6, 19-17, 19-20,

19-22, 19-33, 19-43, 22-10,

26-7, 26-9, 28-4, 28-10,
28-23

1-2

Index-15

INTERMETRICSINCORPORATED'701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS02138.(617)_61_lR40

SUBBIT

Subroutine

Subscripts

Subscripting of Unarrayed Data Types

Subtraction

Sub-tree Equivalence

SUM

Swapping

SYSTEM

System-defined Error

TAB

TAN

TANH

TASK

Task Block

Task Closing

Task Initiation

Task Opening

Templates

TEMPORARY

Temporary Data

TERMINATE

THEN

Index-16

21-17, 21-25

See Function Block and

Procedure Block

2-8, 2-9, Chapter 6, 17-4,

17-18, 19-22, 20-13, 22-10,

28-9, 28-13, 28-21, 29-10

6-1

7-3, 7-23

19-30

B-7

See Process Swapping

25-7

25-1, 25-17

12-13, 22-5

7-33, B-2

B-2

13-10, 16-6, 28-3,

28-4 , 28-7

13-2, 13-7, 26-21, 29-10

13-10

See SCHEDULE

13-10

15-3, 15-8, 19-4, 19-5,

19-21, 19-22, 19-28,

23-5, 26-2, 26-6, 28-4,

30-3, 30-4

26-13

26-10, 28-7

13-5, 13-12, 13-18, 23-6,

23-9, 23-18, 26-21, 28-2,
29-10

9-2, 9-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Top down design

TRACE

TRANSPOSE

Transpose

_atrix

Tree Equivalence

TRIM

TRUNCATE

Uni-valued initialization

UNIT

Unpaged device

Unqualified Structure Reference

Update Data Block

UPDATE PRIORITY

User-defined Error

VECTOR

Vector (Data Type)

Version

Vertical Positioning (Device}

WAIT

WAIT FOR

WAIT UNTIL

1-1

B-3

B-3

7-13, 7-16

19-28, 19-39

7-34, B-6

B-1

4-10, 16-1

7-33, B-3

12"1, 12-4, 12-7,

12-8, 22-2

19-21

26-15, 26-19, 27-12

13-5, 13-18, 13-21,

23-6, 26-21, 29-10

25-1, 25-17

4-1, 4-6, 4-9, 4-11,

11-9, 19-13, 21-7, 28-7

4-1, 4-6, 4-12, 6-3,

21-1, 22-10, 28-3, 28-7

15-5, 23-5

12-12, 12-15, 22-5

13-5, 13-18, 13-19, 23-6,

24-20, 26-21, 28-2, 29-10

13-20, 24-20

13-20

Index-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138, (617) 661-1840

Well-bracketed Statements

WRITE

%MACRO

+

(space)

/

()

<=

#

1-9, i0-i

12-4, 12-7, 20-25

31-2

7-2, 7-4, 7-23

7-2, 7-4, 7-23

7-2, 7-5, 7-23

7-2, 7-5, 7-23

7-2, 7-6, 7-23

7-2, 7-7, 7-23

7-2, 7-13, 7-23

7-16 , 7-23

7-2, 7-8, 7-12, 7-23

+9-7, 9-10, 9-13

9-7, 9-10, 9-13

9-7, 9-10, 9-13

9-7, 9-10, 9-13

9-7, 9-10, 9-13

16-3, 21-7

NASA-JSC

Index-18

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

